PhotonTransferCurveExtractPairTask¶
- class lsst.cp.pipe.PhotonTransferCurveExtractPairTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)¶
- Bases: - PhotonTransferCurveExtractTaskBase- Attributes Summary - Methods Summary - computeGaussianHistogramParameters(im1Area, ...)- Compute KS test for a Gaussian model fit to a histogram of the difference image. - Empty (clear) the metadata for this Task and all sub-Tasks. - Get metadata for all tasks. - Get the task name as a hierarchical name including parent task names. - getGainFromFlatPair(im1Area, im2Area, ...[, ...])- Estimate the gain from a single pair of flats. - getImageAreasMasksStats(exposure1, exposure2)- Get image areas in a region as well as masks and statistic objects. - getName()- Get the name of the task. - Get a dictionary of all tasks as a shallow copy. - makeCovArray(inputTuple, maxRangeFromTuple)- Make covariances array from tuple. - makeField(doc)- Make a - lsst.pex.config.ConfigurableFieldfor this task.- makeSubtask(name, **keyArgs)- Create a subtask as a new instance as the - nameattribute of this task.- measureMeanVarCov(im1Area, im2Area, ...)- Calculate the mean of each of two exposures and the variance and covariance of their difference. - run(*, inputExp, inputDims[, ...])- Measure covariances from a single flat pair. - runQuantum(butlerQC, inputRefs, outputRefs)- Do butler IO and transform to provide in memory objects for tasks - runmethod.- timer(name[, logLevel])- Context manager to log performance data for an arbitrary block of code. - Attributes Documentation - Methods Documentation - computeGaussianHistogramParameters(im1Area, im2Area, imStatsCtrl, mu1, mu2)¶
- Compute KS test for a Gaussian model fit to a histogram of the difference image. - Parameters:
- im1Arealsst.afw.image.MaskedImageF
- Masked image from exposure 1. 
- im2Arealsst.afw.image.MaskedImageF
- Masked image from exposure 2. 
- imStatsCtrllsst.afw.math.StatisticsControl
- Statistics control object. 
- mu1float
- Clipped mean of im1Area (ADU). 
- mu2float
- Clipped mean of im2Area (ADU). 
 
- im1Area
- Returns:
 - Notes - The algorithm here was originally developed by Aaron Roodman. Tests on the full focal plane of LSSTCam during testing has shown that a KS test p-value cut of 0.01 is a good discriminant for well-behaved flat pairs (p>0.01) and poorly behaved non-Gaussian flat pairs (p<0.01). 
 - getFullMetadata() TaskMetadata¶
- Get metadata for all tasks. - Returns:
- metadataTaskMetadata
- The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc. 
 
- metadata
 - Notes - The returned metadata includes timing information (if - @timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with- .replaced by- :, followed by- .and the name of the item, e.g.:- topLevelTaskName:subtaskName:subsubtaskName.itemName - using - :in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
 - getFullName() str¶
- Get the task name as a hierarchical name including parent task names. - Returns:
- fullNamestr
- The full name consists of the name of the parent task and each subtask separated by periods. For example: - The full name of top-level task “top” is simply “top”. 
- The full name of subtask “sub” of top-level task “top” is “top.sub”. 
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”. 
 
 
- fullName
 
 - getGainFromFlatPair(im1Area, im2Area, imStatsCtrl, mu1, mu2, correctionType='NONE', readNoise=None)¶
- Estimate the gain from a single pair of flats. - The basic premise is 1/g = <(I1 - I2)^2/(I1 + I2)> = 1/const, where I1 and I2 correspond to flats 1 and 2, respectively. Corrections for the variable QE and the read-noise are then made following the derivation in Robert Lupton’s forthcoming book, which gets - 1/g = <(I1 - I2)^2/(I1 + I2)> - 1/mu(sigma^2 - 1/2g^2). - This is a quadratic equation, whose solutions are given by: - g = mu +/- sqrt(2*sigma^2 - 2*const*mu + mu^2)/(2*const*mu*2
- 2*sigma^2) 
 
 - where ‘mu’ is the average signal level and ‘sigma’ is the amplifier’s readnoise. The positive solution will be used. The way the correction is applied depends on the value supplied for correctionType. - correctionType is one of [‘NONE’, ‘SIMPLE’ or ‘FULL’]
- ‘NONE’ : uses the 1/g = <(I1 - I2)^2/(I1 + I2)> formula. ‘SIMPLE’ : uses the gain from the ‘NONE’ method for the - 1/2g^2 term. - ‘FULL’solves the full equation for g, discarding the
- non-physical solution to the resulting quadratic. 
 
 - Parameters:
- im1Arealsst.afw.image.maskedImage.MaskedImageF
- Masked image from exposure 1. 
- im2Arealsst.afw.image.maskedImage.MaskedImageF
- Masked image from exposure 2. 
- imStatsCtrllsst.afw.math.StatisticsControl
- Statistics control object. 
- mu1: `float`
- Clipped mean of im1Area (ADU). 
- mu2: `float`
- Clipped mean of im2Area (ADU). 
- correctionTypestr, optional
- The correction applied, one of [‘NONE’, ‘SIMPLE’, ‘FULL’] 
- readNoisefloat, optional
- Amplifier readout noise (ADU). 
 
- im1Area
- Returns:
- gainfloat
- Gain, in e/ADU. 
 
- gain
- Raises:
- RuntimeError
- Raise if - correctionTypeis not one of ‘NONE’, ‘SIMPLE’, or ‘FULL’.
 
 
 - getImageAreasMasksStats(exposure1, exposure2, region=None)¶
- Get image areas in a region as well as masks and statistic objects. - Parameters:
- exposure1lsst.afw.image.ExposureF
- First exposure of flat field pair. 
- exposure2lsst.afw.image.ExposureF
- Second exposure of flat field pair. 
- regionlsst.geom.Box2I, optional
- Region of each exposure where to perform the calculations (e.g, an amplifier). 
 
- exposure1
- Returns:
- im1Arealsst.afw.image.MaskedImageF
- Masked image from exposure 1. 
- im2Arealsst.afw.image.MaskedImageF
- Masked image from exposure 2. 
- imStatsCtrllsst.afw.math.StatisticsControl
- Statistics control object. 
- mu1float
- Clipped mean of im1Area (ADU). 
- mu2float
- Clipped mean of im2Area (ADU). 
 
- im1Area
 
 - getName() str¶
- Get the name of the task. - Returns:
- taskNamestr
- Name of the task. 
 
- taskName
 - See also - getFullName
- Get the full name of the task. 
 
 - getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
- Get a dictionary of all tasks as a shallow copy. - Returns:
- taskDictdict
- Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc. 
 
- taskDict
 
 - makeCovArray(inputTuple, maxRangeFromTuple)¶
- Make covariances array from tuple. - Parameters:
- inputTuplenumpy.ndarray
- Structured array with rows with at least (mu, afwVar, cov, var, i, j, npix), where: mu : - float- 0.5*(m1 + m2), where mu1 is the mean value of flat1 and mu2 is the mean value of flat2. 
- maxRangeFromTupleint
- Maximum range to select from tuple. 
 
- inputTuple
- Returns:
- covnumpy.array
- Covariance arrays, indexed by mean signal mu. 
- vCovnumpy.array
- Variance of the [co]variance arrays, indexed by mean signal mu. 
- muValsnumpy.array
- List of mean signal values. 
 
- cov
 
 - classmethod makeField(doc: str) ConfigurableField¶
- Make a - lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- docstr
- Help text for the field. 
 
- doc
- Returns:
- configurableFieldlsst.pex.config.ConfigurableField
- A - ConfigurableFieldfor this task.
 
- configurableField
 - Examples - Provides a convenient way to specify this task is a subtask of another task. - Here is an example of use: - class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task") 
 - makeSubtask(name: str, **keyArgs: Any) None¶
- Create a subtask as a new instance as the - nameattribute of this task.- Parameters:
- namestr
- Brief name of the subtask. 
- **keyArgs
- Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden: - config.
- parentTask.
 
 
- name
 - Notes - The subtask must be defined by - Task.config.name, an instance of- ConfigurableFieldor- RegistryField.
 - measureMeanVarCov(im1Area, im2Area, imStatsCtrl, mu1, mu2)¶
- Calculate the mean of each of two exposures and the variance and covariance of their difference. The variance is calculated via afwMath, and the covariance via the methods in Astier+19 (appendix A). In theory, var = covariance[0,0]. This should be validated, and in the future, we may decide to just keep one (covariance). - Parameters:
- im1Arealsst.afw.image.maskedImage.MaskedImageF
- Masked image from exposure 1. 
- im2Arealsst.afw.image.maskedImage.MaskedImageF
- Masked image from exposure 2. 
- imStatsCtrllsst.afw.math.StatisticsControl
- Statistics control object. 
- mu1: `float`
- Clipped mean of im1Area (ADU). 
- mu2: `float`
- Clipped mean of im2Area (ADU). 
 
- im1Area
- Returns:
- mufloat
- 0.5*(mu1 + mu2), where mu1, and mu2 are the clipped means of the regions in both exposures. If either mu1 or m2 are NaN’s, the returned value is NaN. 
- varDifffloat
- Half of the clipped variance of the difference of the regions inthe two input exposures. If either mu1 or m2 are NaN’s, the returned value is NaN. 
- covDiffAstierlistorNaN
- rowMeanVariancefloat
- Variance of the means of each row in the difference image. Taken from - github.com/lsst-camera-dh/eo_pipe.- If either mu1 or m2 are NaN’s, the returned value is NaN. 
 
- mu
 
 - run(*, inputExp, inputDims, inputPhotodiodeData=None)¶
- Measure covariances from a single flat pair. - Parameters:
- inputExplist[lsst.pipe.base.connections.DeferredDatasetRef]
- List of 2 references to the input flat exposures. 
- inputDimslist[int]
- List of 2 exposure numbers for the input flat exposures. 
- inputPhotodiodeDatalist
- [ - lsst.pipe.base.connections.DeferredDatasetRef], optional- List of 2 references to input photodiode data. 
 
- inputExp
- Returns:
- resultslsst.pipe.base.Struct
- The resulting Struct contains: - outputCovariance
- The single-pair PTC measurement - lsst.ip.isr.PhotonTransferCurveDataset
 
 
- results
 
 - runQuantum(butlerQC, inputRefs, outputRefs)¶
- Do butler IO and transform to provide in memory objects for tasks - runmethod.- Parameters:
- butlerQCQuantumContext
- A butler which is specialized to operate in the context of a - lsst.daf.butler.Quantum.
- inputRefsInputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.
- outputRefsOutputQuantizedConnection
- Datastructure whose attribute names are the names that identify connections defined in corresponding - PipelineTaskConnectionsclass. The values of these attributes are the- lsst.daf.butler.DatasetRefobjects associated with the defined output connections.
 
- butlerQC