FgcmBuildStarsTableTask¶
- class lsst.fgcmcal.FgcmBuildStarsTableTask(initInputs=None, **kwargs)¶
Bases:
FgcmBuildStarsBaseTaskBuild stars for the FGCM global calibration, using sourceTable_visit catalogs.
Attributes Summary
Methods Summary
Empty (clear) the metadata for this Task and all sub-Tasks.
fgcmMakeAllStarObservations(groupedHandles, ...)Compile all good star observations from visits in visitCat.
fgcmMakeVisitCatalog(camera, groupedHandles)Make a visit catalog with all the keys from each visit
fgcmMatchStars(visitCat, obsCat[, lutHandle])Use FGCM code to match observations into unique stars.
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName()Get the name of the task.
Get a dictionary of all tasks as a shallow copy.
makeField(doc)Make a
lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the
nameattribute of this task.run(**kwargs)Run task algorithm on in-memory data.
runQuantum(butlerQC, inputRefs, outputRefs)Do butler IO and transform to provide in memory objects for tasks
runmethod.timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Attributes Documentation
Methods Documentation
- fgcmMakeAllStarObservations(groupedHandles, visitCat, sourceSchema, camera, calibFluxApertureRadius=None)¶
Compile all good star observations from visits in visitCat.
- Parameters:
- groupedHandles
dict[list[lsst.daf.butler.DeferredDatasetHandle]] Dataset handles, grouped by visit.
- visitCat
afw.table.BaseCatalog Catalog with visit data for FGCM
- sourceSchema
lsst.afw.table.Schema Schema for the input src catalogs.
- camera
lsst.afw.cameraGeom.Camera - calibFluxApertureRadius
float, optional Aperture radius for calibration flux.
- inStarObsCat
afw.table.BaseCatalog Input observation catalog. If this is incomplete, observations will be appended from when it was cut off.
- groupedHandles
- Returns:
- fgcmStarObservations
afw.table.BaseCatalog Full catalog of good observations.
- fgcmStarObservations
- Raises:
- RuntimeError: Raised if doSubtractLocalBackground is True and
calibFluxApertureRadius is not set.
- fgcmMakeVisitCatalog(camera, groupedHandles, useScienceDetectors=False)¶
Make a visit catalog with all the keys from each visit
- Parameters:
- camera
lsst.afw.cameraGeom.Camera Camera from the butler
- groupedHandles
dict[list[lsst.daf.butler.DeferredDatasetHandle]] Dataset handles, grouped by visit.
- useScienceDetectors
bool, optional Limit to science detectors?
- camera
- Returns:
- visitCat:
afw.table.BaseCatalog
- visitCat:
- fgcmMatchStars(visitCat, obsCat, lutHandle=None)¶
Use FGCM code to match observations into unique stars.
- Parameters:
- visitCat: `afw.table.BaseCatalog`
Catalog with visit data for fgcm
- obsCat: `afw.table.BaseCatalog`
Full catalog of star observations for fgcm
- lutHandle: `lsst.daf.butler.DeferredDatasetHandle`, optional
Data reference to fgcm look-up table (used if matching reference stars).
- Returns:
- fgcmStarIdCat:
afw.table.BaseCatalog Catalog of unique star identifiers and index keys
- fgcmStarIndicesCat:
afwTable.BaseCatalog Catalog of unique star indices
- fgcmRefCat:
afw.table.BaseCatalog Catalog of matched reference stars. Will be None if
config.doReferenceMatchesis False.
- fgcmStarIdCat:
- getFullMetadata() TaskMetadata¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- getName() str¶
Get the name of the task.
- Returns:
- taskName
str Name of the task.
- taskName
See also
getFullNameGet the full name of the task.
- getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- classmethod makeField(doc: str) ConfigurableField¶
Make a
lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- doc
str Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None¶
Create a subtask as a new instance as the
nameattribute of this task.- Parameters:
- name
str Brief name of the subtask.
- **keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
config.parentTask.
- name
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.
- run(**kwargs: Any) Struct¶
Run task algorithm on in-memory data.
This method should be implemented in a subclass. This method will receive keyword-only arguments whose names will be the same as names of connection fields describing input dataset types. Argument values will be data objects retrieved from data butler. If a dataset type is configured with
multiplefield set toTruethen the argument value will be a list of objects, otherwise it will be a single object.If the task needs to know its input or output DataIds then it also has to override the
runQuantummethod.This method should return a
Structwhose attributes share the same name as the connection fields describing output dataset types.- Parameters:
- **kwargs
Any Arbitrary parameters accepted by subclasses.
- **kwargs
- Returns:
- struct
Struct Struct with attribute names corresponding to output connection fields.
- struct
Examples
Typical implementation of this method may look like:
def run(self, *, input, calib): # "input", "calib", and "output" are the names of the # connection fields. # Assuming that input/calib datasets are `scalar` they are # simple objects, do something with inputs and calibs, produce # output image. image = self.makeImage(input, calib) # If output dataset is `scalar` then return object, not list return Struct(output=image)
- runQuantum(butlerQC, inputRefs, outputRefs)¶
Do butler IO and transform to provide in memory objects for tasks
runmethod.- Parameters:
- butlerQC
QuantumContext A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum.- inputRefs
InputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.- outputRefs
OutputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined output connections.
- butlerQC