SerializedDatasetType¶
- class lsst.daf.butler.SerializedDatasetType(*, name: str, storageClass: str | None = None, dimensions: list[typing.Annotated[str, Strict(strict=True)]] | None = None, parentStorageClass: str | None = None, isCalibration: bool = False)¶
Bases:
BaseModelSimplified model of a
DatasetTypesuitable for serialization.Attributes Summary
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].Methods Summary
direct(*, name[, storageClass, dimensions, ...])Construct a
SerializedDatasetTypedirectly without validators.Attributes Documentation
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
Methods Documentation
- classmethod direct(*, name: str, storageClass: str | None = None, dimensions: list | None = None, parentStorageClass: str | None = None, isCalibration: bool = False) SerializedDatasetType¶
Construct a
SerializedDatasetTypedirectly without validators.This differs from Pydantic’s model_construct method in that the arguments are explicitly what the model requires, and it will recurse through members, constructing them from their corresponding
directmethods.This method should only be called when the inputs are trusted.
- Parameters:
- name
str The name of the dataset type.
- storageClass
strorNone The name of the storage class.
- dimensions
listorNone The dimensions associated with this dataset type.
- parentStorageClass
strorNone The parent storage class name if this is a component.
- isCalibration
bool Whether this dataset type represents calibrations.
- name
- Returns:
SerializedDatasetTypeA Pydantic model representing a dataset type.