BrighterFatterKernelSolveTask¶
- class lsst.cp.pipe.BrighterFatterKernelSolveTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)¶
Bases:
PipelineTaskMeasure appropriate Brighter-Fatter Kernel from the PTC dataset.
Attributes Summary
Whether this task can be run by an executor that uses subprocesses for parallelism.
Methods Summary
averageCorrelations(xCorrList, name)Average input correlations.
Empty (clear) the metadata for this Task and all sub-Tasks.
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName()Get the name of the task.
Get a dictionary of all tasks as a shallow copy.
makeField(doc)Make a
lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the
nameattribute of this task.quadraticCorrelations(xCorrList, fluxList, name)Measure a quadratic correlation model.
run(inputPtc, dummy, camera, inputDims)Combine covariance information from PTC into brighter-fatter kernels.
runQuantum(butlerQC, inputRefs, outputRefs)Ensure that the input and output dimensions are passed along.
sampleCovModel(fluxes, noiseMatrix, gain, ...)Sample the correlation model and measure widetile{C}_{ij} from Broughton et al. 2023 (eq.
successiveOverRelax(source[, maxIter, eLevel])An implementation of the successive over relaxation (SOR) method.
timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Attributes Documentation
- canMultiprocess: ClassVar[bool] = True¶
Whether this task can be run by an executor that uses subprocesses for parallelism.
Methods Documentation
- averageCorrelations(xCorrList, name)¶
Average input correlations.
- Parameters:
- xCorrList
list[numpy.array] List of cross-correlations. These are expected to be square arrays.
- name
str Name for log messages.
- xCorrList
- Returns:
- meanXcorr
numpy.array, (N, N) The averaged cross-correlation.
- meanXcorr
- getFullMetadata() TaskMetadata¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- getName() str¶
Get the name of the task.
- Returns:
- taskName
str Name of the task.
- taskName
See also
getFullNameGet the full name of the task.
- getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- classmethod makeField(doc: str) ConfigurableField¶
Make a
lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- doc
str Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None¶
Create a subtask as a new instance as the
nameattribute of this task.- Parameters:
- name
str Brief name of the subtask.
- **keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
config.parentTask.
- name
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.
- quadraticCorrelations(xCorrList, fluxList, name)¶
Measure a quadratic correlation model.
- Parameters:
- xCorrList
list[numpy.array] List of cross-correlations. These are expected to be square arrays.
- fluxList
numpy.array, (Nflux,) Associated list of fluxes.
- name
str Name for log messages.
- xCorrList
- Returns:
- meanXcorr
numpy.array, (N, N) The averaged cross-correlation.
- meanXcorr
- run(inputPtc, dummy, camera, inputDims)¶
Combine covariance information from PTC into brighter-fatter kernels.
- Parameters:
- inputPtc
lsst.ip.isr.PhotonTransferCurveDataset PTC data containing per-amplifier covariance measurements.
- dummy
lsst.afw.image.Exposure The exposure used to select the appropriate PTC dataset. In almost all circumstances, one of the input exposures used to generate the PTC dataset is the best option.
- camera
lsst.afw.cameraGeom.Camera Camera to use for camera geometry information.
- inputDims
lsst.daf.butler.DataCoordinateordict DataIds to use to populate the output calibration.
- inputPtc
- Returns:
- results
lsst.pipe.base.Struct The resulst struct containing:
outputBfkResulting Brighter-Fatter Kernel (
lsst.ip.isr.BrighterFatterKernel).
- results
- runQuantum(butlerQC, inputRefs, outputRefs)¶
Ensure that the input and output dimensions are passed along.
- Parameters:
- butlerQC
lsst.daf.butler.QuantumContext Butler to operate on.
- inputRefs
lsst.pipe.base.InputQuantizedConnection Input data refs to load.
- ouptutRefs
lsst.pipe.base.OutputQuantizedConnection Output data refs to persist.
- butlerQC
- sampleCovModel(fluxes, noiseMatrix, gain, covModelList, flux, name)¶
Sample the correlation model and measure widetile{C}_{ij} from Broughton et al. 2023 (eq. 4)
- Parameters:
- fluxes
list[float] List of fluxes (in ADU)
- noiseMatrix
numpy.array, (N, N) Noise matrix
- gain
float Amplifier gain
- covModelList
numpy.array, (N, N) List of covariance model matrices. These are expected to be square arrays.
- flux
float Flux in electrons at which to sample the covariance model.
- name
str Name for log messages.
- fluxes
- Returns:
- covTilde
numpy.array, (N, N) The calculated C-tilde from Broughton et al. 2023 (eq. 4).
- covTilde
- successiveOverRelax(source, maxIter=None, eLevel=None)¶
An implementation of the successive over relaxation (SOR) method.
A numerical method for solving a system of linear equations with faster convergence than the Gauss-Seidel method.
- Parameters:
- source
numpy.ndarray, (N, N) The input array.
- maxIter
int, optional Maximum number of iterations to attempt before aborting.
- eLevel
float, optional The target error level at which we deem convergence to have occurred.
- source
- Returns:
- output
numpy.ndarray, (N, N) The solution.
- output