LinearitySolveTask¶
- class lsst.cp.pipe.LinearitySolveTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)¶
Bases:
PipelineTaskFit the linearity from the PTC dataset.
Attributes Summary
Whether this task can be run by an executor that uses subprocesses for parallelism.
Methods Summary
debugFit(stepname, xVector, yVector, yModel, ...)Debug method for linearity fitting.
Empty (clear) the metadata for this Task and all sub-Tasks.
fillBadAmp(linearizer, fitOrder, inputPtc, amp)fixupBadAmps(linearizer)Fix nan padding in bad amplifiers.
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName()Get the name of the task.
Get a dictionary of all tasks as a shallow copy.
makeField(doc)Make a
lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the
nameattribute of this task.run(inputPtc, dummy, camera, inputDims[, ...])Fit non-linearity to PTC data, returning the correct Linearizer object.
runQuantum(butlerQC, inputRefs, outputRefs)Ensure that the input and output dimensions are passed along.
timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Attributes Documentation
- canMultiprocess: ClassVar[bool] = True¶
Whether this task can be run by an executor that uses subprocesses for parallelism.
Methods Documentation
- debugFit(stepname, xVector, yVector, yModel, mask, ampName)¶
Debug method for linearity fitting.
- Parameters:
- stepname
str A label to use to check if we care to debug at a given line of code.
- xVector
numpy.array, (N,) The values to use as the independent variable in the linearity fit.
- yVector
numpy.array, (N,) The values to use as the dependent variable in the linearity fit.
- yModel
numpy.array, (N,) The values to use as the linearized result.
- mask
numpy.array[bool], (N,) , optional A mask to indicate which entries of
xVectorandyVectorto keep.- ampName
str Amplifier name to lookup linearity correction values.
- stepname
- fillBadAmp(linearizer, fitOrder, inputPtc, amp)¶
- fixupBadAmps(linearizer)¶
Fix nan padding in bad amplifiers.
- Parameters:
- linearizer
lsst.ip.isr.Linearizer
- linearizer
- getFullMetadata() TaskMetadata¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- getName() str¶
Get the name of the task.
- Returns:
- taskName
str Name of the task.
- taskName
See also
getFullNameGet the full name of the task.
- getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- classmethod makeField(doc: str) ConfigurableField¶
Make a
lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- doc
str Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None¶
Create a subtask as a new instance as the
nameattribute of this task.- Parameters:
- name
str Brief name of the subtask.
- **keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
config.parentTask.
- name
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.
- run(inputPtc, dummy, camera, inputDims, inputPhotodiodeCorrection=None, inputNormalization=None)¶
Fit non-linearity to PTC data, returning the correct Linearizer object.
- Parameters:
- inputPtc
lsst.ip.isr.PtcDataset Pre-measured PTC dataset.
- dummy
lsst.afw.image.Exposure The exposure used to select the appropriate PTC dataset. In almost all circumstances, one of the input exposures used to generate the PTC dataset is the best option.
- camera
lsst.afw.cameraGeom.Camera Camera geometry.
- inputDims
lsst.daf.butler.DataCoordinateordict DataIds to use to populate the output calibration.
- inputPhotodiodeCorrection
lsst.ip.isr.PhotodiodeCorrection, optional Pre-measured photodiode correction used in the case when applyPhotodiodeCorrection=True.- inputNormalization
astropy.table.Table, optional Focal plane normalization table to use if useFocalPlaneNormalization is True.
- inputPtc
- Returns:
- results
lsst.pipe.base.Struct The results struct containing:
outputLinearizerFinal linearizer calibration (
lsst.ip.isr.Linearizer).outputProvenanceProvenance data for the new calibration (
lsst.ip.isr.IsrProvenance).
- results
Notes
This task currently fits only polynomial-defined corrections, where the correction coefficients are defined such that: \(corrImage = uncorrImage + \sum_i c_i uncorrImage^(2 + i)\) These \(c_i\) are defined in terms of the direct polynomial fit: \(meanVector ~ P(x=timeVector) = \sum_j k_j x^j\) such that \(c_(j-2) = -k_j/(k_1^j)\) in units of DN^(1-j) (c.f., Eq. 37 of 2003.05978). The
config.polynomialOrderorconfig.splineKnotsdefine the maximum order of \(x^j\) to fit. As \(k_0\) and \(k_1\) are degenerate with bias level and gain, they are not included in the non-linearity correction.
- runQuantum(butlerQC, inputRefs, outputRefs)¶
Ensure that the input and output dimensions are passed along.
- Parameters:
- butlerQC
lsst.daf.butler.QuantumContext Butler to operate on.
- inputRefs
lsst.pipe.base.InputQuantizedConnection Input data refs to load.
- ouptutRefs
lsst.pipe.base.OutputQuantizedConnection Output data refs to persist.
- butlerQC