CpFlatNormalizationTask¶
CpFlatNormalizationTask
determines the scaling factor to apply to each exposure/detector set when constructing the final flat field.
Processing summary¶
CpFlatNormalizationTask
runs these operations:
Combine the set of background measurements for all input exposures for all detectors into a matrix
B[exposure, detector]
.Iteratively solve for two vectors
E[exposure]
andG[detector]
whose Cartesian product are the best fit toB[exposure, detector]
.
Python API summary¶
from lsst.cp.pipe.cpFlatMeasure import CpFlatNormalizationTask
-
class
CpFlatNormalizationTask
(*, config=None, log=None, initInputs=None, **kwargs) Rescale merged flat frames to remove unequal screen illumination
...
- attributeconfig
Access configuration fields and retargetable subtasks.
See also
See the CpFlatNormalizationTask
API reference for complete details.
Retargetable subtasks¶
No subtasks.
Configuration fields¶
connections¶
- Data type
lsst.pipe.base.config.CpFlatNormalizationTaskConfigConnections
- Field type
Configurations describing the connections of the PipelineTask to datatypes
level¶
- Default
'DETECTOR'
- Field type
str
ChoiceField
(optional)- Choices
'DETECTOR'
Correct using full detector statistics.
'AMP'
Correct using individual amplifiers.
None
Field is optional
Which level to apply normalizations.
saveLogOutput¶
Flag to enable/disable saving of log output for a task, enabled by default.
scaleMaxIter¶
Max number of iterations to use in scale solver.