ChainedDatastore¶
- class lsst.daf.butler.datastores.chainedDatastore.ChainedDatastore(config: DatastoreConfig, bridgeManager: DatastoreRegistryBridgeManager, datastores: list[Datastore])¶
Bases:
Datastore
Chained Datastores to allow read and writes from multiple datastores.
A ChainedDatastore is configured with multiple datastore configurations. A
put()
is always sent to each datastore. Aget()
operation is sent to each datastore in turn and the first datastore to return a valid dataset is used.- Parameters:
- config
DatastoreConfig
orstr
Configuration. This configuration must include a
datastores
field as a sequence of datastore configurations. The order in this sequence indicates the order to use for read operations.- bridgeManager
DatastoreRegistryBridgeManager
Object that manages the interface between
Registry
and datastores.- datastores
list
[Datastore
] All the child datastores known to this datastore.
- config
Notes
ChainedDatastore never supports
None
or"move"
as aningest
transfer mode. It supports"copy"
,"symlink"
,"relsymlink"
and"hardlink"
if and only if all its child datastores do.Attributes Summary
Key to specify where child datastores are configured.
Path to configuration defaults.
Names associated with this datastore returned as a list.
Return the root URIs for each named datastore.
Methods Summary
clone
(bridgeManager)Make an independent copy of this Datastore with a different
DatastoreRegistryBridgeManager
instance.emptyTrash
([ignore_errors])Remove all datasets from the trash.
exists
(ref)Check if the dataset exists in one of the datastores.
export
(refs, *[, directory, transfer])Export datasets for transfer to another data repository.
export_records
(refs)Export datastore records and locations to an in-memory data structure.
forget
(refs)Indicate to the Datastore that it should remove all records of the given datasets, without actually deleting them.
get
(ref[, parameters, storageClass])Load an InMemoryDataset from the store.
Return all the lookup keys relevant to this datastore.
getManyURIs
(refs[, predict, allow_missing])Return URIs associated with many datasets.
getURI
(ref[, predict])URI to the Dataset.
getURIs
(ref[, predict])Return URIs associated with dataset.
Make definitions of the opaque tables used by this Datastore.
import_records
(data)Import datastore location and record data from an in-memory data structure.
ingest_zip
(zip_path, transfer)Ingest an indexed Zip file and contents.
knows
(ref)Check if the dataset is known to any of the datastores.
knows_these
(refs)Check which of the given datasets are known to this datastore.
mexists
(refs[, artifact_existence])Check the existence of multiple datasets at once.
needs_expanded_data_ids
(transfer[, entity])Test whether this datastore needs expanded data IDs to ingest.
Retrieve serializable data that can be used to execute a
get()
.put
(inMemoryDataset, ref)Write a InMemoryDataset with a given
DatasetRef
to each datastore.put_new
(in_memory_dataset, ref)Write a
InMemoryDataset
with a givenDatasetRef
to the store.remove
(ref)Indicate to the datastore that a dataset can be removed.
retrieveArtifacts
(refs, destination[, ...])Retrieve the file artifacts associated with the supplied refs.
setConfigRoot
(root, config, full[, overwrite])Set any filesystem-dependent config options for child Datastores to be appropriate for a new empty repository with the given root.
set_retrieve_dataset_type_method
(method)Specify a method that can be used by datastore to retrieve registry-defined dataset type.
transfer
(inputDatastore, ref)Retrieve a dataset from an input
Datastore
, and store the result in thisDatastore
.transfer_from
(source_datastore, refs[, ...])Transfer dataset artifacts from another datastore to this one.
trash
(ref[, ignore_errors])Indicate to the Datastore that a Dataset can be moved to the trash.
validateConfiguration
(entities[, logFailures])Validate some of the configuration for this datastore.
validateKey
(lookupKey, entity)Validate a specific look up key with supplied entity.
Attributes Documentation
- containerKey: ClassVar[str | None] = 'datastores'¶
Key to specify where child datastores are configured.
- defaultConfigFile: ClassVar[str | None] = 'datastores/chainedDatastore.yaml'¶
Path to configuration defaults. Accessed within the
configs
resource or relative to a search path. Can be None if no defaults specified.
- names¶
- roots¶
Methods Documentation
- clone(bridgeManager: DatastoreRegistryBridgeManager) Datastore ¶
Make an independent copy of this Datastore with a different
DatastoreRegistryBridgeManager
instance.- Parameters:
- bridgeManager
DatastoreRegistryBridgeManager
New
DatastoreRegistryBridgeManager
object to use when instantiating managers.
- bridgeManager
- Returns:
- datastore
Datastore
New
Datastore
instance with the same configuration as the existing instance.
- datastore
- emptyTrash(ignore_errors: bool = True) None ¶
Remove all datasets from the trash.
- Parameters:
- ignore_errors
bool
, optional Determine whether errors should be ignored.
- ignore_errors
Notes
Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces.
- exists(ref: DatasetRef) bool ¶
Check if the dataset exists in one of the datastores.
- export(refs: Iterable[DatasetRef], *, directory: ResourcePathExpression | None = None, transfer: str | None = 'auto') Iterable[FileDataset] ¶
Export datasets for transfer to another data repository.
- Parameters:
- refsiterable of
DatasetRef
Dataset references to be exported.
- directory
str
, optional Path to a directory that should contain files corresponding to output datasets. Ignored if
transfer
is explicitlyNone
.- transfer
str
, optional Mode that should be used to move datasets out of the repository. Valid options are the same as those of the
transfer
argument toingest
, and datastores may similarly signal that a transfer mode is not supported by raisingNotImplementedError
. If “auto” is given and nodirectory
is specified,None
will be implied.
- refsiterable of
- Returns:
- datasetiterable of
DatasetTransfer
Structs containing information about the exported datasets, in the same order as
refs
.
- datasetiterable of
- Raises:
- NotImplementedError
Raised if the given transfer mode is not supported.
- export_records(refs: Iterable[DatasetIdRef]) Mapping[str, DatastoreRecordData] ¶
Export datastore records and locations to an in-memory data structure.
- forget(refs: Iterable[DatasetRef]) None ¶
Indicate to the Datastore that it should remove all records of the given datasets, without actually deleting them.
- Parameters:
- refs
Iterable
[DatasetRef
] References to the datasets being forgotten.
- refs
Notes
Asking a datastore to forget a
DatasetRef
it does not hold should be a silent no-op, not an error.
- get(ref: DatasetRef, parameters: Mapping[str, Any] | None = None, storageClass: StorageClass | str | None = None) Any ¶
Load an InMemoryDataset from the store.
The dataset is returned from the first datastore that has the dataset.
- Parameters:
- ref
DatasetRef
Reference to the required Dataset.
- parameters
dict
StorageClass
-specific parameters that specify, for example, a slice of the dataset to be loaded.- storageClass
StorageClass
orstr
, optional The storage class to be used to override the Python type returned by this method. By default the returned type matches the dataset type definition for this dataset. Specifying a read
StorageClass
can force a different type to be returned. This type must be compatible with the original type.
- ref
- Returns:
- inMemoryDataset
object
Requested dataset or slice thereof as an InMemoryDataset.
- inMemoryDataset
- Raises:
- FileNotFoundError
Requested dataset can not be retrieved.
- TypeError
Return value from formatter has unexpected type.
- ValueError
Formatter failed to process the dataset.
- getLookupKeys() set[LookupKey] ¶
Return all the lookup keys relevant to this datastore.
- Returns:
- keys
set
ofLookupKey
The keys stored internally for looking up information based on
DatasetType
name orStorageClass
.
- keys
- getManyURIs(refs: Iterable[DatasetRef], predict: bool = False, allow_missing: bool = False) dict[lsst.daf.butler._dataset_ref.DatasetRef, lsst.daf.butler.datastore._datastore.DatasetRefURIs] ¶
Return URIs associated with many datasets.
- Parameters:
- Returns:
- URIs
dict
of [DatasetRef
,DatasetRefUris
] A dict of primary and component URIs, indexed by the passed-in refs.
- URIs
- Raises:
- FileNotFoundError
A URI has been requested for a dataset that does not exist and guessing is not allowed.
Notes
In file-based datastores, getManyURIs does not check that the file is really there, it’s assuming it is if datastore is aware of the file then it actually exists.
- getURI(ref: DatasetRef, predict: bool = False) ResourcePath ¶
URI to the Dataset.
The returned URI is from the first datastore in the list that has the dataset with preference given to the first dataset coming from a permanent datastore. If no datastores have the dataset and prediction is allowed, the predicted URI for the first datastore in the list will be returned.
- Parameters:
- Returns:
- uri
lsst.resources.ResourcePath
URI pointing to the dataset within the datastore. If the dataset does not exist in the datastore, and if
predict
isTrue
, the URI will be a prediction and will include a URI fragment “#predicted”.
- uri
- Raises:
- FileNotFoundError
A URI has been requested for a dataset that does not exist and guessing is not allowed.
- RuntimeError
Raised if a request is made for a single URI but multiple URIs are associated with this dataset.
Notes
If the datastore does not have entities that relate well to the concept of a URI the returned URI string will be descriptive. The returned URI is not guaranteed to be obtainable.
- getURIs(ref: DatasetRef, predict: bool = False) DatasetRefURIs ¶
Return URIs associated with dataset.
- Parameters:
- ref
DatasetRef
Reference to the required dataset.
- predict
bool
, optional If the datastore does not know about the dataset, controls whether it should return a predicted URI or not.
- ref
- Returns:
- uris
DatasetRefURIs
The URI to the primary artifact associated with this dataset (if the dataset was disassembled within the datastore this may be
None
), and the URIs to any components associated with the dataset artifact. (can be empty if there are no components).
- uris
Notes
The returned URI is from the first datastore in the list that has the dataset with preference given to the first dataset coming from a permanent datastore. If no datastores have the dataset and prediction is allowed, the predicted URI for the first datastore in the list will be returned.
- get_opaque_table_definitions() Mapping[str, DatastoreOpaqueTable] ¶
Make definitions of the opaque tables used by this Datastore.
- Returns:
- tables
Mapping
[str
,ddl.TableSpec
] Mapping of opaque table names to their definitions. This can be an empty mapping if Datastore does not use opaque tables to keep datastore records.
- tables
- import_records(data: Mapping[str, DatastoreRecordData]) None ¶
Import datastore location and record data from an in-memory data structure.
- Parameters:
Notes
Implementations should generally not check that any external resources (e.g. files) referred to by these records actually exist, for performance reasons; we expect higher-level code to guarantee that they do.
Implementations are responsible for calling
DatastoreRegistryBridge.insert
on all datasets indata.locations
where the key is innames
, as well as loading any opaque table data.Implementations may assume that datasets are either fully present or not at all (single-component exports are not permitted).
- ingest_zip(zip_path: ResourcePath, transfer: str | None) None ¶
Ingest an indexed Zip file and contents.
The Zip file must have an index file as created by
retrieveArtifacts
.- Parameters:
- zip_path
lsst.resources.ResourcePath
Path to the Zip file.
- transfer
str
Method to use for transferring the Zip file into the datastore.
- zip_path
Notes
Datastore constraints are bypassed with Zip ingest. A zip file can contain multiple dataset types. Should the entire Zip be rejected if one dataset type is in the constraints list? If configured to reject everything, ingest should not be attempted.
The Zip file is given to each datastore in turn, ignoring datastores where it is not supported. Is deemed successful if any of the datastores accept the file.
- knows(ref: DatasetRef) bool ¶
Check if the dataset is known to any of the datastores.
Does not check for existence of any artifact.
- knows_these(refs: Iterable[DatasetRef]) dict[lsst.daf.butler._dataset_ref.DatasetRef, bool] ¶
Check which of the given datasets are known to this datastore.
This is like
mexist()
but does not check that the file exists.- Parameters:
- refsiterable
DatasetRef
The datasets to check.
- refsiterable
- Returns:
- exists
dict`[`DatasetRef
,bool
] Mapping of dataset to boolean indicating whether the dataset is known to the datastore.
- exists
- mexists(refs: Iterable[DatasetRef], artifact_existence: dict[lsst.resources._resourcePath.ResourcePath, bool] | None = None) dict[lsst.daf.butler._dataset_ref.DatasetRef, bool] ¶
Check the existence of multiple datasets at once.
- Parameters:
- refsiterable of
DatasetRef
The datasets to be checked.
- artifact_existence
dict
[lsst.resources.ResourcePath
,bool
] Optional mapping of datastore artifact to existence. Updated by this method with details of all artifacts tested. Can be
None
if the caller is not interested.
- refsiterable of
- Returns:
- needs_expanded_data_ids(transfer: str | None, entity: DatasetRef | DatasetType | StorageClass | None = None) bool ¶
Test whether this datastore needs expanded data IDs to ingest.
- Parameters:
- Returns:
- prepare_get_for_external_client(ref: DatasetRef) object | None ¶
Retrieve serializable data that can be used to execute a
get()
.- Parameters:
- ref
DatasetRef
Reference to the required dataset.
- ref
- Returns:
- put(inMemoryDataset: Any, ref: DatasetRef) None ¶
Write a InMemoryDataset with a given
DatasetRef
to each datastore.The put() to child datastores can fail with
DatasetTypeNotSupportedError
. The put() for this datastore will be deemed to have succeeded so long as at least one child datastore accepted the inMemoryDataset.- Parameters:
- inMemoryDataset
object
The dataset to store.
- ref
DatasetRef
Reference to the associated Dataset.
- inMemoryDataset
- Raises:
- TypeError
Supplied object and storage class are inconsistent.
- DatasetTypeNotSupportedError
All datastores reported
DatasetTypeNotSupportedError
.
- put_new(in_memory_dataset: Any, ref: DatasetRef) Mapping[str, DatasetRef] ¶
Write a
InMemoryDataset
with a givenDatasetRef
to the store.- Parameters:
- in_memory_dataset
object
The Dataset to store.
- ref
DatasetRef
Reference to the associated Dataset.
- in_memory_dataset
- Returns:
- remove(ref: DatasetRef) None ¶
Indicate to the datastore that a dataset can be removed.
The dataset will be removed from each datastore. The dataset is not required to exist in every child datastore.
- Parameters:
- ref
DatasetRef
Reference to the required dataset.
- ref
- Raises:
- FileNotFoundError
Attempt to remove a dataset that does not exist. Raised if none of the child datastores removed the dataset.
- retrieveArtifacts(refs: Iterable[DatasetRef], destination: ResourcePath, transfer: str = 'auto', preserve_path: bool = True, overwrite: bool = False, write_index: bool = True, add_prefix: bool = False) dict[lsst.resources._resourcePath.ResourcePath, lsst.daf.butler.datastores.file_datastore.retrieve_artifacts.ArtifactIndexInfo] ¶
Retrieve the file artifacts associated with the supplied refs.
- Parameters:
- refsiterable of
DatasetRef
The datasets for which file artifacts are to be retrieved. A single ref can result in multiple files. The refs must be resolved.
- destination
lsst.resources.ResourcePath
Location to write the file artifacts.
- transfer
str
, optional Method to use to transfer the artifacts. Must be one of the options supported by
lsst.resources.ResourcePath.transfer_from()
. “move” is not allowed.- preserve_path
bool
, optional If
True
the full path of the file artifact within the datastore is preserved. IfFalse
the final file component of the path is used.- overwrite
bool
, optional If
True
allow transfers to overwrite existing files at the destination.- write_index
bool
, optional If
True
write a file at the top level containing a serialization of aZipIndex
for the downloaded datasets.- add_prefix
bool
, optional Add a prefix based on the DatasetId. Only used if
preserve_path
isFalse
.
- refsiterable of
- Returns:
- artifact_map
dict
[lsst.resources.ResourcePath
,ArtifactIndexInfo
] Mapping of retrieved file to associated index information.
- artifact_map
- classmethod setConfigRoot(root: str, config: Config, full: Config, overwrite: bool = True) None ¶
Set any filesystem-dependent config options for child Datastores to be appropriate for a new empty repository with the given root.
- Parameters:
- root
str
Filesystem path to the root of the data repository.
- config
Config
A
Config
to update. Only the subset understood by this component will be updated. Will not expand defaults.- full
Config
A complete config with all defaults expanded that can be converted to a
DatastoreConfig
. Read-only and will not be modified by this method. Repository-specific options that should not be obtained from defaults when Butler instances are constructed should be copied fromfull
toconfig
.- overwrite
bool
, optional If
False
, do not modify a value inconfig
if the value already exists. Default is always to overwrite with the providedroot
.
- root
Notes
If a keyword is explicitly defined in the supplied
config
it will not be overridden by this method ifoverwrite
isFalse
. This allows explicit values set in external configs to be retained.
- set_retrieve_dataset_type_method(method: Callable[[str], DatasetType | None] | None) None ¶
Specify a method that can be used by datastore to retrieve registry-defined dataset type.
- Parameters:
Notes
This method is only needed for a Datastore supporting a “trusted” mode when it does not have an access to datastore records and needs to guess dataset location based on its stored dataset type.
- transfer(inputDatastore: Datastore, ref: DatasetRef) None ¶
Retrieve a dataset from an input
Datastore
, and store the result in thisDatastore
.- Parameters:
- inputDatastore
Datastore
The external
Datastore
from which to retreive the Dataset.- ref
DatasetRef
Reference to the required dataset in the input data store.
- inputDatastore
- Returns:
- results
list
List containing the return value from the
put()
to each child datastore.
- results
- transfer_from(source_datastore: Datastore, refs: Collection[DatasetRef], transfer: str = 'auto', artifact_existence: dict[lsst.resources._resourcePath.ResourcePath, bool] | None = None, dry_run: bool = False) tuple[set[lsst.daf.butler._dataset_ref.DatasetRef], set[lsst.daf.butler._dataset_ref.DatasetRef]] ¶
Transfer dataset artifacts from another datastore to this one.
- Parameters:
- source_datastore
Datastore
The datastore from which to transfer artifacts. That datastore must be compatible with this datastore receiving the artifacts.
- refs
Collection
ofDatasetRef
The datasets to transfer from the source datastore.
- transfer
str
, optional How (and whether) the dataset should be added to the datastore. Choices include “move”, “copy”, “link”, “symlink”, “relsymlink”, and “hardlink”. “link” is a special transfer mode that will first try to make a hardlink and if that fails a symlink will be used instead. “relsymlink” creates a relative symlink rather than use an absolute path. Most datastores do not support all transfer modes. “auto” (the default) is a special option that will let the data store choose the most natural option for itself. If the source location and transfer location are identical the transfer mode will be ignored.
- artifact_existence
dict
[lsst.resources.ResourcePath
,bool
] Optional mapping of datastore artifact to existence. Updated by this method with details of all artifacts tested. Can be
None
if the caller is not interested.- dry_run
bool
, optional Process the supplied source refs without updating the target datastore.
- source_datastore
- Returns:
- Raises:
- TypeError
Raised if the two datastores are not compatible.
- trash(ref: DatasetRef | Iterable[DatasetRef], ignore_errors: bool = True) None ¶
Indicate to the Datastore that a Dataset can be moved to the trash.
- Parameters:
- ref
DatasetRef
or iterable thereof Reference(s) to the required Dataset.
- ignore_errors
bool
, optional Determine whether errors should be ignored. When multiple refs are being trashed there will be no per-ref check.
- ref
- Raises:
- FileNotFoundError
When Dataset does not exist and errors are not ignored. Only checked if a single ref is supplied (and not in a list).
Notes
Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces.
- validateConfiguration(entities: Iterable[DatasetRef | DatasetType | StorageClass], logFailures: bool = False) None ¶
Validate some of the configuration for this datastore.
- Parameters:
- Raises:
- DatastoreValidationError
Raised if there is a validation problem with a configuration. All the problems are reported in a single exception.
Notes
This method checks each datastore in turn.
- validateKey(lookupKey: LookupKey, entity: DatasetRef | DatasetType | StorageClass) None ¶
Validate a specific look up key with supplied entity.
- Parameters:
- lookupKey
LookupKey
Key to use to retrieve information from the datastore configuration.
- entity
DatasetRef
,DatasetType
, orStorageClass
Entity to compare with configuration retrieved using the specified lookup key.
- lookupKey
- Raises:
- DatastoreValidationError
Raised if there is a problem with the combination of entity and lookup key.
Notes
Bypasses the normal selection priorities by allowing a key that would normally not be selected to be validated.