QgraphSummary¶
- class lsst.pipe.base.QgraphSummary(*, graphID: BuildId, cmdLine: str | None = None, creationUTC: str | None = None, inputCollection: list[str] | None = None, outputCollection: str | None = None, outputRun: str | None = None, qgraphTaskSummaries: dict[str, lsst.pipe.base.graph.graphSummary.QgraphTaskSummary] = {})¶
Bases:
BaseModel
Report for the QuantumGraph creation or reading.
Attributes Summary
A dictionary of computed field names and their corresponding
ComputedFieldInfo
objects.Configuration for the model, should be a dictionary conforming to [
ConfigDict
][pydantic.config.ConfigDict].Get extra fields set during validation.
Metadata about the fields defined on the model, mapping of field names to [
FieldInfo
][pydantic.fields.FieldInfo] objects.Returns the set of fields that have been explicitly set on this model instance.
Methods Summary
construct
([_fields_set])copy
(*args, **kwargs)See
pydantic.BaseModel.copy
.dict
(*[, include, exclude, by_alias, ...])from_orm
(obj)json
(*[, include, exclude, by_alias, ...])model_construct
(*args, **kwargs)See
pydantic.BaseModel.model_construct
.model_copy
(*args, **kwargs)See
pydantic.BaseModel.model_copy
.model_dump
(*args, **kwargs)See
pydantic.BaseModel.model_dump
.model_dump_json
(*args, **kwargs)See
pydantic.BaseModel.model_dump_json
.model_json_schema
(*args, **kwargs)See
pydantic.BaseModel.model_json_schema
.model_parametrized_name
(params)Compute the class name for parametrizations of generic classes.
model_post_init
(_BaseModel__context)Override this method to perform additional initialization after
__init__
andmodel_construct
.model_rebuild
(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate
(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json
(json_data, *[, strict, ...])Usage docs: https://docs.pydantic.dev/2.9/concepts/json/#json-parsing
model_validate_strings
(obj, *[, strict, context])Validate the given object with string data against the Pydantic model.
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])update_forward_refs
(**localns)validate
(value)Attributes Documentation
- model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}¶
A dictionary of computed field names and their corresponding
ComputedFieldInfo
objects.
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [
ConfigDict
][pydantic.config.ConfigDict].
- model_extra¶
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
None
ifconfig.extra
is not set to"allow"
.
- model_fields: ClassVar[Dict[str, FieldInfo]] = {'cmdLine': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'creationUTC': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'graphID': FieldInfo(annotation=NewType, required=True), 'inputCollection': FieldInfo(annotation=Union[list[str], NoneType], required=False, default=None), 'outputCollection': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'outputRun': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'qgraphTaskSummaries': FieldInfo(annotation=dict[str, QgraphTaskSummary], required=False, default={})}¶
Metadata about the fields defined on the model, mapping of field names to [
FieldInfo
][pydantic.fields.FieldInfo] objects.This replaces
Model.__fields__
from Pydantic V1.
- model_fields_set¶
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
Methods Documentation
- dict(*, include: Set[int] | Set[str] | Dict[int, Set[int] | Set[str] | Dict[int, IncEx | bool] | Dict[str, IncEx | bool] | bool] | Dict[str, Set[int] | Set[str] | Dict[int, IncEx | bool] | Dict[str, IncEx | bool] | bool] | None = None, exclude: Set[int] | Set[str] | Dict[int, Set[int] | Set[str] | Dict[int, IncEx | bool] | Dict[str, IncEx | bool] | bool] | Dict[str, Set[int] | Set[str] | Dict[int, IncEx | bool] | Dict[str, IncEx | bool] | bool] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ¶
- json(*, include: Set[int] | Set[str] | Dict[int, Set[int] | Set[str] | Dict[int, IncEx | bool] | Dict[str, IncEx | bool] | bool] | Dict[str, Set[int] | Set[str] | Dict[int, IncEx | bool] | Dict[str, IncEx | bool] | bool] | None = None, exclude: Set[int] | Set[str] | Dict[int, Set[int] | Set[str] | Dict[int, IncEx | bool] | Dict[str, IncEx | bool] | bool] | Dict[str, Set[int] | Set[str] | Dict[int, IncEx | bool] | Dict[str, IncEx | bool] | bool] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ¶
- classmethod model_construct(*args: Any, **kwargs: Any) Any ¶
See
pydantic.BaseModel.model_construct
.
- classmethod model_json_schema(*args: Any, **kwargs: Any) Any ¶
See
pydantic.BaseModel.model_json_schema
.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ¶
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model
with 2 type variables and a concrete modelModel[str, int]
, the value(str, int)
would be passed toparams
.
- Returns:
String representing the new class where
params
are passed tocls
as type variables.- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ¶
Override this method to perform additional initialization after
__init__
andmodel_construct
. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ¶
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to
False
. raise_errors: Whether to raise errors, defaults toTrue
. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults toNone
.- Returns:
Returns
None
if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrue
if rebuilding was successful, otherwiseFalse
.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None) Self ¶
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None) Self ¶
Usage docs: https://docs.pydantic.dev/2.9/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError: If
json_data
is not a JSON string or the object could not be validated.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None) Self ¶
Validate the given object with string data against the Pydantic model.
- Args:
obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self ¶
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self ¶