PredictedQuantumDatasetsModel¶
- class lsst.pipe.base.quantum_graph.PredictedQuantumDatasetsModel(*, quantum_id: ~uuid.UUID, task_label: str, data_coordinate: list[int | str] = <factory>, inputs: dict[str, list[lsst.pipe.base.quantum_graph._predicted.PredictedDatasetModel]] = <factory>, outputs: dict[str, list[lsst.pipe.base.quantum_graph._predicted.PredictedDatasetModel]] = <factory>, datastore_records: dict[str, lsst.daf.butler.datastore.record_data.SerializedDatastoreRecordData] = <factory>)¶
Bases:
BaseModelData model for a description of a single predicted quantum that includes its inputs and outputs.
Attributes Summary
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].Get extra fields set during validation.
Returns the set of fields that have been explicitly set on this model instance.
Methods Summary
construct([_fields_set])copy(*args, **kwargs)See
pydantic.BaseModel.copy.Deserialize the mapping of datastore records.
dict(*[, include, exclude, by_alias, ...])from_execution_quantum(task_node, quantum, ...)Construct from an
lsst.daf.butler.Quantuminstance.from_old_quantum_graph_init(task_init_node, ...)Construct from the init-input and init-output dataset types of a task in an old
QuantumGraphinstance.from_orm(obj)Return an iterator over the UUIDs of all datasets referenced by this quantum.
Return an iterator over the UUIDs of all datasets consumed by this quantum.
Return an iterator over the UUIDs of all datasets produced by this quantum.
json(*[, include, exclude, by_alias, ...])model_construct(*args, **kwargs)See
pydantic.BaseModel.model_construct.model_copy(*args, **kwargs)See
pydantic.BaseModel.model_copy.model_dump(*args, **kwargs)See
pydantic.BaseModel.model_dump.model_dump_json(*args, **kwargs)See
pydantic.BaseModel.model_dump_json.model_json_schema(*args, **kwargs)See
pydantic.BaseModel.model_json_schema.model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(context, /)Override this method to perform additional initialization after
__init__andmodel_construct.model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(*args, **kwargs)See
pydantic.BaseModel.model_validate.model_validate_json(*args, **kwargs)See
pydantic.BaseModel.model_validate_json.model_validate_strings(*args, **kwargs)See
pydantic.BaseModel.model_validate_strings.parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])update_forward_refs(**localns)validate(value)Attributes Documentation
- model_computed_fields = {}¶
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- model_extra¶
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
Noneifconfig.extrais not set to"allow".
- model_fields = {'data_coordinate': FieldInfo(annotation=list[Union[int, str]], required=False, default_factory=list), 'datastore_records': FieldInfo(annotation=dict[str, SerializedDatastoreRecordData], required=False, default_factory=dict), 'inputs': FieldInfo(annotation=dict[str, list[PredictedDatasetModel]], required=False, default_factory=dict), 'outputs': FieldInfo(annotation=dict[str, list[PredictedDatasetModel]], required=False, default_factory=dict), 'quantum_id': FieldInfo(annotation=UUID, required=True), 'task_label': FieldInfo(annotation=str, required=True)}¶
- model_fields_set¶
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
Methods Documentation
- deserialize_datastore_records() dict[str, lsst.daf.butler.datastore.record_data.DatastoreRecordData]¶
Deserialize the mapping of datastore records.
- dict(*, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]¶
- classmethod from_execution_quantum(task_node: TaskNode, quantum: Quantum, quantum_id: UUID) PredictedQuantumDatasetsModel¶
Construct from an
lsst.daf.butler.Quantuminstance.- Parameters:
- task_node
pipeline_graph.TaskNode Task node from the pipeline graph.
- quantum
lsst.daf.butler.quantum Quantum object.
- quantum_id
uuid.UUID ID for this quantum.
- task_node
- Returns:
- model
PredictedFullQuantumModel Model for this quantum.
- model
- classmethod from_old_quantum_graph_init(task_init_node: TaskInitNode, old_quantum_graph: QuantumGraph) PredictedQuantumDatasetsModel¶
Construct from the init-input and init-output dataset types of a task in an old
QuantumGraphinstance.- Parameters:
- task_init_node
pipeline_graph.TaskNode Task init node from the pipeline graph.
- old_quantum_graph
QuantumGraph Quantum graph.
- task_init_node
- Returns:
- model
PredictedFullQuantumModel Model for this “init” quantum.
- model
- iter_dataset_ids() Iterator[UUID]¶
Return an iterator over the UUIDs of all datasets referenced by this quantum.
- iter_input_dataset_ids() Iterator[UUID]¶
Return an iterator over the UUIDs of all datasets consumed by this quantum.
- iter_output_dataset_ids() Iterator[UUID]¶
Return an iterator over the UUIDs of all datasets produced by this quantum.
- json(*, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str¶
- classmethod model_json_schema(*args: Any, **kwargs: Any) Any¶
See
pydantic.BaseModel.model_json_schema.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str¶
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Modelwith 2 type variables and a concrete modelModel[str, int], the value(str, int)would be passed toparams.
- Returns:
String representing the new class where
paramsare passed toclsas type variables.- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(context: Any, /) None¶
Override this method to perform additional initialization after
__init__andmodel_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None¶
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to
False. raise_errors: Whether to raise errors, defaults toTrue. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults toNone.- Returns:
Returns
Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrueif rebuilding was successful, otherwiseFalse.
- classmethod model_validate_json(*args: Any, **kwargs: Any) Any¶
See
pydantic.BaseModel.model_validate_json.
- classmethod model_validate_strings(*args: Any, **kwargs: Any) Any¶
See
pydantic.BaseModel.model_validate_strings.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self¶
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self¶