SkyMeasurementTask¶
- class lsst.pipe.tasks.background.SkyMeasurementTask(config: Config | None = None, *, name: str | None = None, parentTask: Task | None = None, log: logging.Logger | lsst.utils.logging.LsstLogAdapter | None = None)¶
- Bases: - Task- Task for creating, persisting and using sky frames - A sky frame is like a fringe frame (the sum of many exposures of the night sky, combined with rejection to remove astrophysical objects) except the structure is on larger scales, and hence we bin the images and represent them as a background model (a - lsst.afw.math.BackgroundMI). The sky frame represents the dominant response of the camera to the sky background.- Methods Summary - averageBackgrounds(bgList)- Average multiple background models - backgroundToExposure(statsImage, bbox)- Convert a background model to an exposure - Empty (clear) the metadata for this Task and all sub-Tasks. - exposureToBackground(bgExp)- Convert an exposure to background model - Get metadata for all tasks. - Get the task name as a hierarchical name including parent task names. - getName()- Get the name of the task. - Get a dictionary of all tasks as a shallow copy. - makeField(doc)- Make a - lsst.pex.config.ConfigurableFieldfor this task.- makeSubtask(name, **keyArgs)- Create a subtask as a new instance as the - nameattribute of this task.- measureBackground(image)- Measure a background model for image - measureScale(image, skyBackground)- Measure scale of background model in image - solveScales(scales)- Solve multiple scales for a single scale factor - subtractSkyFrame(image, skyBackground, scale)- Subtract sky frame from science image - timer(name[, logLevel])- Context manager to log performance data for an arbitrary block of code. - Methods Documentation - averageBackgrounds(bgList)¶
- Average multiple background models - The input background models should be a - BackgroundListconsisting of a single- BackgroundMI.- Parameters:
- bgListlistoflsst.afw.math.BackgroundList
- Background models to average. 
 
- bgList
- Returns:
- bgExplsst.afw.image.Exposure
- Background model in Exposure format. 
 
- bgExp
 
 - backgroundToExposure(statsImage, bbox)¶
- Convert a background model to an exposure - Calibs need to be persisted as an Exposure, so we need to convert the background model to an Exposure. - Parameters:
- statsImagelsst.afw.image.MaskedImageF
- Background model’s statistics image. 
- bboxlsst.geom.Box2I
- Bounding box for image. 
 
- statsImage
- Returns:
- explsst.afw.image.Exposure
- Background model in Exposure format. 
 
- exp
 
 - static exposureToBackground(bgExp)¶
- Convert an exposure to background model - Calibs need to be persisted as an Exposure, so we need to convert the persisted Exposure to a background model. - Parameters:
- bgExplsst.afw.image.Exposure
- Background model in Exposure format. 
 
- bgExp
- Returns:
- bglsst.afw.math.BackgroundList
- Background model 
 
- bg
 
 - getFullMetadata() TaskMetadata¶
- Get metadata for all tasks. - Returns:
- metadataTaskMetadata
- The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc. 
 
- metadata
 - Notes - The returned metadata includes timing information (if - @timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with- .replaced by- :, followed by- .and the name of the item, e.g.:- topLevelTaskName:subtaskName:subsubtaskName.itemName - using - :in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
 - getFullName() str¶
- Get the task name as a hierarchical name including parent task names. - Returns:
- fullNamestr
- The full name consists of the name of the parent task and each subtask separated by periods. For example: - The full name of top-level task “top” is simply “top”. 
- The full name of subtask “sub” of top-level task “top” is “top.sub”. 
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”. 
 
 
- fullName
 
 - getName() str¶
- Get the name of the task. - Returns:
- taskNamestr
- Name of the task. 
 
- taskName
 - See also - getFullName
- Get the full name of the task. 
 
 - getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
- Get a dictionary of all tasks as a shallow copy. - Returns:
- taskDictdict
- Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc. 
 
- taskDict
 
 - classmethod makeField(doc: str) ConfigurableField¶
- Make a - lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- docstr
- Help text for the field. 
 
- doc
- Returns:
- configurableFieldlsst.pex.config.ConfigurableField
- A - ConfigurableFieldfor this task.
 
- configurableField
 - Examples - Provides a convenient way to specify this task is a subtask of another task. - Here is an example of use: - class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task") 
 - makeSubtask(name: str, **keyArgs: Any) None¶
- Create a subtask as a new instance as the - nameattribute of this task.- Parameters:
- namestr
- Brief name of the subtask. 
- **keyArgs
- Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden: - config.
- parentTask.
 
 
- name
 - Notes - The subtask must be defined by - Task.config.name, an instance of- ConfigurableFieldor- RegistryField.
 - measureBackground(image)¶
- Measure a background model for image - This doesn’t use a full-featured background model (e.g., no Chebyshev approximation) because we just want the binning behaviour. This will allow us to average the bins later ( - averageBackgrounds).- The - BackgroundMIis wrapped in a- BackgroundListso it can be pickled and persisted.- Parameters:
- imagelsst.afw.image.MaskedImage
- Image for which to measure background. 
 
- image
- Returns:
- bgModellsst.afw.math.BackgroundList
- Background model. 
 
- bgModel
 
 - measureScale(image, skyBackground)¶
- Measure scale of background model in image - We treat the sky frame much as we would a fringe frame (except the length scale of the variations is different): we measure samples on the input image and the sky frame, which we will use to determine the scaling factor in the ‘solveScales` method. - Parameters:
- imagelsst.afw.image.Exposureorlsst.afw.image.MaskedImage
- Science image for which to measure scale. 
- skyBackgroundlsst.afw.math.BackgroundList
- Sky background model. 
 
- image
- Returns:
- imageSamplesnumpy.ndarray
- Sample measurements on image. 
- skySamplesnumpy.ndarray
- Sample measurements on sky frame. 
 
- imageSamples
 
 - solveScales(scales)¶
- Solve multiple scales for a single scale factor - Having measured samples from the image and sky frame, we fit for the scaling factor. - Parameters:
- scaleslistof atupleof twonumpy.ndarrayarrays
- A - listof the results from- measureScalemethod.
 
- scales
- Returns:
- scalefloat
- Scale factor. 
 
- scale
 
 - subtractSkyFrame(image, skyBackground, scale, bgList=None)¶
- Subtract sky frame from science image - Parameters:
- imagelsst.afw.image.Exposureorlsst.afw.image.MaskedImage
- Science image. 
- skyBackgroundlsst.afw.math.BackgroundList
- Sky background model. 
- scalefloat
- Scale to apply to background model. 
- bgListlsst.afw.math.BackgroundList
- List of backgrounds applied to image 
 
- image