.. lsst-task-topic:: lsst.meas.algorithms.detection.SourceDetectionTask ################### SourceDetectionTask ################### `SourceDetectionTask` detects positive and negative sources on an exposure and produces a `lsst.afw.table.SourceCatalog` of detected sources. This task convolves the image with a Gaussian approximation to the PSF, matched to the sigma of the input exposure, because this is separable and fast. The PSF would have to be very non-Gaussian or non-circular for this approximation to have a significant impact on the signal-to-noise of the detected sources. .. _lsst.meas.algorithms.SourceDetectionTask-api: Python API summary ================== .. lsst-task-api-summary:: lsst.meas.algorithms.SourceDetectionTask .. _lsst.meas.algorithms.SourceDetectionTask-subtasks: Retargetable subtasks ===================== .. lsst-task-config-subtasks:: lsst.meas.algorithms.SourceDetectionTask .. _lsst.meas.algorithms.SourceDetectionTask-configs: Configuration fields ==================== .. lsst-task-config-fields:: lsst.meas.algorithms.SourceDetectionTask .. _lsst.meas.algorithms.SourceDetectionTask-examples: Examples ======== This code is in `measAlgTasks.py` in the examples directory, and can be run as *e.g.* .. code-block:: bash examples/measAlgTasks.py --doDisplay The example also runs the SingleFrameMeasurementTask; see meas_algorithms_measurement_Example for more explanation. Import the task (there are some other standard imports; read the file if you're confused) .. code-block:: py from lsst.meas.algorithms.detection import SourceDetectionTask We need to create our task before processing any data as the task constructor can add an extra column to the schema, but first we need an almost-empty Schema .. code-block:: py schema = afwTable.SourceTable.makeMinimalSchema() after which we can call the constructor: .. code-block:: py config = SourceDetectionTask.ConfigClass() config.thresholdPolarity = "both" config.background.isNanSafe = True config.thresholdValue = 3 detectionTask = SourceDetectionTask(config=config, schema=schema) We're now ready to process the data (we could loop over multiple exposure/catalogues using the same task objects). First create the output table: .. code-block:: py table = afwTable.SourceTable.make(schema) And process the image .. code-block:: py result = detectionTask.run(table, exposure) (You may not be happy that the threshold was set in the config before creating the Task rather than being set separately for each exposure. You **can** reset it just before calling the run method if you must, but we should really implement a better solution). We can then unpack the results: .. code-block:: py sources = result.sources print("Found %d sources (%d +ve, %d -ve)" % (len(sources), result.fpSets.numPos, result.fpSets.numNeg)) .. _lsst.meas.algorithms.SourceDetectionTask-debug: Debugging ========= The :ref:`pipetask run <pipetask-command>` command-line interface supports a flag ``--debug`` to to import `debug.py` from your ``PYTHONPATH``; see `lsstDebug` for more about `debug.py` files. The available variables in `SourceDetectionTask` are: `display` #. If True, display the exposure of afwDisplay.Display's frame 0. Positive detections in blue, negative detections in cyan. #. If display > 1, display the convolved exposure on frame 1