DiaPipelineConnections¶
- class lsst.ap.association.DiaPipelineConnections(*, config=None)¶
- Bases: - PipelineTaskConnections- Butler connections for DiaPipelineTask. - Attributes Summary - Methods Summary - adjustQuantum(inputs, outputs, label, dataId)- Override to make adjustments to - lsst.daf.butler.DatasetRefobjects in the- lsst.daf.butler.core.Quantumduring the graph generation stage of the activator.- buildDatasetRefs(quantum)- Builds QuantizedConnections corresponding to input Quantum - Attributes Documentation - allConnections: Dict[str, BaseConnection] = {'apdbMarker': Output(name='apdb_marker', storageClass='Config', doc='Marker dataset storing the configuration of the Apdb for each visit/detector. Used to signal the completion of the pipeline.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False), 'associatedDiaSources': Output(name='{fakesType}{coaddName}Diff_assocDiaSrc', storageClass='DataFrame', doc='Optional output storing the DiaSource catalog after matching, calibration, and standardization for insertation into the Apdb.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False), 'diaSourceTable': Input(name='{fakesType}{coaddName}Diff_diaSrcTable', storageClass='DataFrame', doc='Catalog of calibrated DiaSources.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1), 'diffIm': Input(name='{fakesType}{coaddName}Diff_differenceExp', storageClass='ExposureF', doc='Difference image on which the DiaSources were detected.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1), 'exposure': Input(name='{fakesType}calexp', storageClass='ExposureF', doc='Calibrated exposure differenced with a template image during image differencing.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1), 'solarSystemObjectTable': Input(name='visitSsObjects', storageClass='DataFrame', doc='Catalog of SolarSolarSystem objects expected to be observable in this detectorVisit.', multiple=False, dimensions=('instrument', 'visit'), isCalibration=False, deferLoad=False, minimum=1), 'template': Input(name='{fakesType}{coaddName}Diff_templateExp', storageClass='ExposureF', doc='Warped template used to create `subtractedExposure`. Not PSF matched.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1)}¶
 - apdbMarker¶
 - associatedDiaSources¶
 - defaultTemplates = {'coaddName': 'deep', 'fakesType': ''}¶
 - diaSourceTable¶
 - diffIm¶
 - exposure¶
 - inputs: Set[str] = frozenset({'diaSourceTable', 'diffIm', 'exposure', 'solarSystemObjectTable', 'template'})¶
 - solarSystemObjectTable¶
 - template¶
 - Methods Documentation - adjustQuantum(inputs, outputs, label, dataId)¶
- Override to make adjustments to - lsst.daf.butler.DatasetRefobjects in the- lsst.daf.butler.core.Quantumduring the graph generation stage of the activator.- This implementation checks to make sure that the filters in the dataset are compatible with AP processing as set by the Apdb/DPDD schema. - Parameters:
- inputsdict
- Dictionary whose keys are an input (regular or prerequisite) connection name and whose values are a tuple of the connection instance and a collection of associated - DatasetRefobjects. The exact type of the nested collections is unspecified; it can be assumed to be multi-pass iterable and support- lenand- in, but it should not be mutated in place. In contrast, the outer dictionaries are guaranteed to be temporary copies that are true- dictinstances, and hence may be modified and even returned; this is especially useful for delegating to- super(see notes below).
- outputsdict
- Dict of output datasets, with the same structure as - inputs.
- labelstr
- Label for this task in the pipeline (should be used in all diagnostic messages). 
- data_idlsst.daf.butler.DataCoordinate
- Data ID for this quantum in the pipeline (should be used in all diagnostic messages). 
 
- inputs
- Returns:
- adjusted_inputsdict
- Dict of the same form as - inputswith updated containers of input- DatasetRefobjects. Connections that are not changed should not be returned at all. Datasets may only be removed, not added. Nested collections may be of any multi-pass iterable type, and the order of iteration will set the order of iteration within- PipelineTask.runQuantum.
- adjusted_outputsdict
- Dict of updated output datasets, with the same structure and interpretation as - adjusted_inputs.
 
- adjusted_inputs
- Raises:
- ScalarError
- Raised if any - Inputor- PrerequisiteInputconnection has- multipleset to- False, but multiple datasets.
- NoWorkFound
- Raised to indicate that this quantum should not be run; not enough datasets were found for a regular - Inputconnection, and the quantum should be pruned or skipped.
- FileNotFoundError
- Raised to cause QuantumGraph generation to fail (with the message included in this exception); not enough datasets were found for a - PrerequisiteInputconnection.
 
 
 - buildDatasetRefs(quantum: Quantum) Tuple[InputQuantizedConnection, OutputQuantizedConnection]¶
- Builds QuantizedConnections corresponding to input Quantum - Parameters:
- quantumlsst.daf.butler.Quantum
- Quantum object which defines the inputs and outputs for a given unit of processing 
 
- quantum
- Returns:
- retValtupleof (InputQuantizedConnection,
- OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the input- lsst.daf.butler.Quantum
 
- retVal