SkyMeasurementTask¶
- class lsst.pipe.tasks.background.SkyMeasurementTask(config: Config | None = None, *, name: str | None = None, parentTask: Task | None = None, log: logging.Logger | lsst.utils.logging.LsstLogAdapter | None = None)¶
Bases:
TaskTask for creating, persisting and using sky frames
A sky frame is like a fringe frame (the sum of many exposures of the night sky, combined with rejection to remove astrophysical objects) except the structure is on larger scales, and hence we bin the images and represent them as a background model (a
lsst.afw.math.BackgroundMI). The sky frame represents the dominant response of the camera to the sky background.Methods Summary
averageBackgrounds(bgList)Average multiple background models
backgroundToExposure(statsImage, bbox)Convert a background model to an exposure
Empty (clear) the metadata for this Task and all sub-Tasks.
exposureToBackground(bgExp)Convert an exposure to background model
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName()Get the name of the task.
Get a dictionary of all tasks as a shallow copy.
makeField(doc)Make a
lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the
nameattribute of this task.measureBackground(image)Measure a background model for image
measureScale(image, skyBackground)Measure scale of background model in image
solveScales(scales)Solve multiple scales for a single scale factor
subtractSkyFrame(image, skyBackground, scale)Subtract sky frame from science image
timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Methods Documentation
- averageBackgrounds(bgList)¶
Average multiple background models
The input background models should be a
BackgroundListconsisting of a singleBackgroundMI.- Parameters:
- bgList
listoflsst.afw.math.BackgroundList Background models to average.
- bgList
- Returns:
- bgExp
lsst.afw.image.Exposure Background model in Exposure format.
- bgExp
- backgroundToExposure(statsImage, bbox)¶
Convert a background model to an exposure
Calibs need to be persisted as an Exposure, so we need to convert the background model to an Exposure.
- Parameters:
- statsImage
lsst.afw.image.MaskedImageF Background model’s statistics image.
- bbox
lsst.geom.Box2I Bounding box for image.
- statsImage
- Returns:
- exp
lsst.afw.image.Exposure Background model in Exposure format.
- exp
- static exposureToBackground(bgExp)¶
Convert an exposure to background model
Calibs need to be persisted as an Exposure, so we need to convert the persisted Exposure to a background model.
- Parameters:
- bgExp
lsst.afw.image.Exposure Background model in Exposure format.
- bgExp
- Returns:
- bg
lsst.afw.math.BackgroundList Background model
- bg
- getFullMetadata() TaskMetadata¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- classmethod makeField(doc: str) ConfigurableField¶
Make a
lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- doc
str Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None¶
Create a subtask as a new instance as the
nameattribute of this task.- Parameters:
- name
str Brief name of the subtask.
- **keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
config.parentTask.
- name
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.
- measureBackground(image)¶
Measure a background model for image
This doesn’t use a full-featured background model (e.g., no Chebyshev approximation) because we just want the binning behaviour. This will allow us to average the bins later (
averageBackgrounds).The
BackgroundMIis wrapped in aBackgroundListso it can be pickled and persisted.- Parameters:
- image
lsst.afw.image.MaskedImage Image for which to measure background.
- image
- Returns:
- bgModel
lsst.afw.math.BackgroundList Background model.
- bgModel
- measureScale(image, skyBackground)¶
Measure scale of background model in image
We treat the sky frame much as we would a fringe frame (except the length scale of the variations is different): we measure samples on the input image and the sky frame, which we will use to determine the scaling factor in the ‘solveScales` method.
- Parameters:
- image
lsst.afw.image.Exposureorlsst.afw.image.MaskedImage Science image for which to measure scale.
- skyBackground
lsst.afw.math.BackgroundList Sky background model.
- image
- Returns:
- imageSamples
numpy.ndarray Sample measurements on image.
- skySamples
numpy.ndarray Sample measurements on sky frame.
- imageSamples
- solveScales(scales)¶
Solve multiple scales for a single scale factor
Having measured samples from the image and sky frame, we fit for the scaling factor.
- Parameters:
- scales
listof atupleof twonumpy.ndarrayarrays A
listof the results frommeasureScalemethod.
- scales
- Returns:
- scale
float Scale factor.
- scale
- subtractSkyFrame(image, skyBackground, scale, bgList=None)¶
Subtract sky frame from science image
- Parameters:
- image
lsst.afw.image.Exposureorlsst.afw.image.MaskedImage Science image.
- skyBackground
lsst.afw.math.BackgroundList Sky background model.
- scale
float Scale to apply to background model.
- bgList
lsst.afw.math.BackgroundList List of backgrounds applied to image
- image