DipoleFitAlgorithm¶
- 
class 
lsst.ip.diffim.DipoleFitAlgorithm(diffim, posImage=None, negImage=None)¶ Bases:
objectFit a dipole model using an image difference.
See also: DMTN-007: Dipole characterization for image differencing.
Methods Summary
displayFitResults(footprint, result)Display data, model fits and residuals (currently uses matplotlib display functions). fitDipole(source[, tol, rel_weight, …])Fit a dipole model to an input diaSource(wrapsfitDipoleImpl).fitDipoleImpl(source[, tol, rel_weight, …])Fit a dipole model to an input difference image. Methods Documentation
- 
displayFitResults(footprint, result)¶ Display data, model fits and residuals (currently uses matplotlib display functions).
Parameters: - footprint : TODO: DM-17458
 Footprint containing the dipole that was fit
- result : 
lmfit.MinimizerResult lmfit.MinimizerResultobject returned bylmfitoptimizer
Returns: - fig : 
matplotlib.pyplot.plot 
- 
fitDipole(source, tol=1e-07, rel_weight=0.1, fitBackground=1, maxSepInSigma=5.0, separateNegParams=True, bgGradientOrder=1, verbose=False, display=False)¶ Fit a dipole model to an input
diaSource(wrapsfitDipoleImpl).Actually, fits the subimage bounded by the input source’s footprint) and optionally constrain the fit using the pre-subtraction images self.posImage (science) and self.negImage (template). Wraps the output into a
pipeBase.Structnamed tuple after computing additional statistics such as orientation and SNR.Parameters: - source : 
lsst.afw.table.SourceRecord Record containing the (merged) dipole source footprint detected on the diffim
- tol : 
float, optional Tolerance parameter for scipy.leastsq() optimization
- rel_weight : 
float, optional Weighting of posImage/negImage relative to the diffim in the fit
- fitBackground : 
int, {0, 1, 2}, optional How to fit linear background gradient in posImage/negImage - 0: do not fit background at all - 1 (default): pre-fit the background using linear least squares and then do not fit it as part
of the dipole fitting optimization
- 2: pre-fit the background using linear least squares (as in 1), and use the parameter
 - estimates from that fit as starting parameters for an integrated “re-fit” of the background as part of the overall dipole fitting optimization.
 
- maxSepInSigma : 
float, optional Allowed window of centroid parameters relative to peak in input source footprint
- separateNegParams : 
bool, optional Fit separate parameters to the flux and background gradient in
- bgGradientOrder : 
int, {0, 1, 2}, optional Desired polynomial order of background gradient
- verbose: `bool`, optional
 Be verbose
- display
 Display input data, best fit model(s) and residuals in a matplotlib window.
Returns: Notes
Parameter
fitBackgroundhas three options, thus it is an integer:- source : 
 
- 
fitDipoleImpl(source, tol=1e-07, rel_weight=0.5, fitBackground=1, bgGradientOrder=1, maxSepInSigma=5.0, separateNegParams=True, verbose=False)¶ Fit a dipole model to an input difference image.
Actually, fits the subimage bounded by the input source’s footprint) and optionally constrain the fit using the pre-subtraction images posImage and negImage.
Parameters: - source : TODO: DM-17458
 TODO: DM-17458
- tol : float, optional
 TODO: DM-17458
- rel_weight : 
float, optional TODO: DM-17458
- fitBackground : 
int, optional TODO: DM-17458
- bgGradientOrder : 
int, optional TODO: DM-17458
- maxSepInSigma : 
float, optional TODO: DM-17458
- separateNegParams : 
bool, optional TODO: DM-17458
- verbose : 
bool, optional TODO: DM-17458
Returns: - result : 
lmfit.MinimizerResult return
lmfit.MinimizerResultobject containing the fit parameters and other information.
-