DipoleFitAlgorithm¶
- 
class lsst.ip.diffim.DipoleFitAlgorithm(diffim, posImage=None, negImage=None)¶
- Bases: - object- Fit a dipole model using an image difference. - See also: DMTN-007: Dipole characterization for image differencing. - Methods Summary - displayFitResults(footprint, result)- Display data, model fits and residuals (currently uses matplotlib display functions). - fitDipole(source[, tol, rel_weight, …])- Fit a dipole model to an input - diaSource(wraps- fitDipoleImpl).- fitDipoleImpl(source[, tol, rel_weight, …])- Fit a dipole model to an input difference image. - Methods Documentation - 
displayFitResults(footprint, result)¶
- Display data, model fits and residuals (currently uses matplotlib display functions). - Parameters: - footprint : TODO: DM-17458
- Footprint containing the dipole that was fit 
- result : lmfit.MinimizerResult
- lmfit.MinimizerResultobject returned by- lmfitoptimizer
 - Returns: - fig : matplotlib.pyplot.plot
 
 - 
fitDipole(source, tol=1e-07, rel_weight=0.1, fitBackground=1, maxSepInSigma=5.0, separateNegParams=True, bgGradientOrder=1, verbose=False, display=False)¶
- Fit a dipole model to an input - diaSource(wraps- fitDipoleImpl).- Actually, fits the subimage bounded by the input source’s footprint) and optionally constrain the fit using the pre-subtraction images self.posImage (science) and self.negImage (template). Wraps the output into a - pipeBase.Structnamed tuple after computing additional statistics such as orientation and SNR.- Parameters: - source : lsst.afw.table.SourceRecord
- Record containing the (merged) dipole source footprint detected on the diffim 
- tol : float, optional
- Tolerance parameter for scipy.leastsq() optimization 
- rel_weight : float, optional
- Weighting of posImage/negImage relative to the diffim in the fit 
- fitBackground : int, {0, 1, 2}, optional
- How to fit linear background gradient in posImage/negImage - 0: do not fit background at all
- 1 (default): pre-fit the background using linear least squares and then do not fit it as part of the dipole fitting optimization
- 2: pre-fit the background using linear least squares (as in 1), and use the parameter estimates from that fit as starting parameters for an integrated “re-fit” of the background as part of the overall dipole fitting optimization.
 
- maxSepInSigma : float, optional
- Allowed window of centroid parameters relative to peak in input source footprint 
- separateNegParams : bool, optional
- Fit separate parameters to the flux and background gradient in 
- bgGradientOrder : int, {0, 1, 2}, optional
- Desired polynomial order of background gradient 
- verbose: `bool`, optional
- Be verbose 
- display
- Display input data, best fit model(s) and residuals in a matplotlib window. 
 - Returns: - Notes - Parameter - fitBackgroundhas three options, thus it is an integer:
- source : 
 - 
fitDipoleImpl(source, tol=1e-07, rel_weight=0.5, fitBackground=1, bgGradientOrder=1, maxSepInSigma=5.0, separateNegParams=True, verbose=False)¶
- Fit a dipole model to an input difference image. - Actually, fits the subimage bounded by the input source’s footprint) and optionally constrain the fit using the pre-subtraction images posImage and negImage. - Parameters: - source : TODO: DM-17458
- TODO: DM-17458 
- tol : float, optional
- TODO: DM-17458 
- rel_weight : float, optional
- TODO: DM-17458 
- fitBackground : int, optional
- TODO: DM-17458 
- bgGradientOrder : int, optional
- TODO: DM-17458 
- maxSepInSigma : float, optional
- TODO: DM-17458 
- separateNegParams : bool, optional
- TODO: DM-17458 
- verbose : bool, optional
- TODO: DM-17458 
 - Returns: - result : lmfit.MinimizerResult
- return - lmfit.MinimizerResultobject containing the fit parameters and other information.
 
 
-