PatchMatchedSummaryTask¶
- 
class lsst.faro.summary.PatchMatchedSummaryTask(config, *args, **kwargs)¶
- Bases: - lsst.faro.base.CatalogSummaryBaseTask- Attributes Summary - canMultiprocess- Methods Summary - adaptArgsAndRun(inputData, inputDataIds, …)- A wrapper around - runused by- MetricsControllerTask.- addStandardMetadata(measurement, outputDataId)- Add data ID-specific metadata required for all metrics. - areInputDatasetsScalar(config)- Return input dataset multiplicity. - emptyMetadata()- Empty (clear) the metadata for this Task and all sub-Tasks. - getAllSchemaCatalogs()- Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. - getFullMetadata()- Get metadata for all tasks. - getFullName()- Get the task name as a hierarchical name including parent task names. - getInputDatasetTypes(config)- Return input dataset types for this task. - getName()- Get the name of the task. - getResourceConfig()- Return resource configuration for this task. - getSchemaCatalogs()- Get the schemas generated by this task. - getTaskDict()- Get a dictionary of all tasks as a shallow copy. - makeField(doc)- Make a - lsst.pex.config.ConfigurableFieldfor this task.- makeSubtask(name, **keyArgs)- Create a subtask as a new instance as the - nameattribute of this task.- run(measurements)- Run the MetricTask on in-memory data. - runQuantum(butlerQC, inputRefs, outputRefs)- Do Butler I/O to provide in-memory objects for run. - timer(name[, logLevel])- Context manager to log performance data for an arbitrary block of code. - Attributes Documentation - 
canMultiprocess= True¶
 - Methods Documentation - 
adaptArgsAndRun(inputData, inputDataIds, outputDataId)¶
- A wrapper around - runused by- MetricsControllerTask.- Task developers should not need to call or override this method. - Parameters: - inputData : dictfromstrto any
- Dictionary whose keys are the names of input parameters and values are Python-domain data objects (or lists of objects) retrieved from data butler. Input objects may be - Noneto represent missing data.
- inputDataIds : dictfromstrtolistof dataId
- Dictionary whose keys are the names of input parameters and values are data IDs (or lists of data IDs) that the task consumes for corresponding dataset type. Data IDs are guaranteed to match data objects in - inputData.
- outputDataId : dictfromstrto dataId
- Dictionary containing a single key, - "measurement", which maps to a single data ID for the measurement. The data ID must have the same granularity as the metric.
 - Returns: - struct : lsst.pipe.base.Struct
- A - Structcontaining at least the following component:- measurement: the value of the metric, computed from- inputData(- lsst.verify.Measurementor- None). The measurement is guaranteed to contain not only the value of the metric, but also any mandatory supplementary information.
 
 - Raises: - lsst.verify.tasks.MetricComputationError
- Raised if an algorithmic or system error prevents calculation of the metric. Examples include corrupted input data or unavoidable exceptions raised by analysis code. The - MetricComputationErrorshould be chained to a more specific exception describing the root cause.- Not having enough data for a metric to be applicable is not an error, and should not trigger this exception. 
 - Notes - This implementation calls - runon the contents of- inputData, followed by calling- addStandardMetadataon the result before returning it.- Examples - Consider a metric that characterizes PSF variations across the entire field of view, given processed images. Then, if - runhas the signature- run(images):- inputData = {'images': [image1, image2, ...]} inputDataIds = {'images': [{'visit': 42, 'ccd': 1}, {'visit': 42, 'ccd': 2}, ...]} outputDataId = {'measurement': {'visit': 42}} result = task.adaptArgsAndRun( inputData, inputDataIds, outputDataId) 
- inputData : 
 - 
addStandardMetadata(measurement, outputDataId)¶
- Add data ID-specific metadata required for all metrics. - This method currently does not add any metadata, but may do so in the future. - Parameters: - measurement : lsst.verify.Measurement
- The - Measurementthat the metadata are added to.
- outputDataId : dataId
- The data ID to which the measurement applies, at the appropriate level of granularity. 
 - Notes - This method should not be overridden by subclasses. - This method is not responsible for shared metadata like the execution environment (which should be added by this - MetricTask’s caller), nor for metadata specific to a particular metric (which should be added when the metric is calculated).- Warning - This method’s signature will change whenever additional data needs to be provided. This is a deliberate restriction to ensure that all subclasses pass in the new data as well. 
- measurement : 
 - 
classmethod areInputDatasetsScalar(config)¶
- Return input dataset multiplicity. - Parameters: - config : cls.ConfigClass
- Configuration for this task. 
 - Returns: - Notes - The default implementation extracts a - PipelineTaskConnectionsobject from- config.
- config : 
 - 
emptyMetadata()¶
- Empty (clear) the metadata for this Task and all sub-Tasks. 
 - 
getAllSchemaCatalogs()¶
- Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. - Returns: - schemacatalogs : dict
- Keys are butler dataset type, values are a empty catalog (an instance of the appropriate - lsst.afw.tableCatalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
 - Notes - This method may be called on any task in the hierarchy; it will return the same answer, regardless. - The default implementation should always suffice. If your subtask uses schemas the override - Task.getSchemaCatalogs, not this method.
- schemacatalogs : 
 - 
getFullMetadata()¶
- Get metadata for all tasks. - Returns: - metadata : lsst.daf.base.PropertySet
- The - PropertySetkeys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
 - Notes - The returned metadata includes timing information (if - @timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with- .replaced by- :, followed by- .and the name of the item, e.g.:- topLevelTaskName:subtaskName:subsubtaskName.itemName - using - :in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- metadata : 
 - 
getFullName()¶
- Get the task name as a hierarchical name including parent task names. - Returns: - fullName : str
- The full name consists of the name of the parent task and each subtask separated by periods. For example: - The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
 
 
- fullName : 
 - 
classmethod getInputDatasetTypes(config)¶
- Return input dataset types for this task. - Parameters: - config : cls.ConfigClass
- Configuration for this task. 
 - Returns: - Notes - The default implementation extracts a - PipelineTaskConnectionsobject from- config.
- config : 
 - 
getResourceConfig()¶
- Return resource configuration for this task. - Returns: - Object of type ResourceConfigorNoneif resource
- configuration is not defined for this task.
 
- Object of type 
 - 
getSchemaCatalogs()¶
- Get the schemas generated by this task. - Returns: - schemaCatalogs : dict
- Keys are butler dataset type, values are an empty catalog (an instance of the appropriate - lsst.afw.tableCatalog type) for this task.
 - See also - Task.getAllSchemaCatalogs
 - Notes - Warning - Subclasses that use schemas must override this method. The default implementation returns an empty dict. - This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data. - Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well. 
- schemaCatalogs : 
 - 
getTaskDict()¶
- Get a dictionary of all tasks as a shallow copy. - Returns: - taskDict : dict
- Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc. 
 
- taskDict : 
 - 
classmethod makeField(doc)¶
- Make a - lsst.pex.config.ConfigurableFieldfor this task.- Parameters: - doc : str
- Help text for the field. 
 - Returns: - configurableField : lsst.pex.config.ConfigurableField
- A - ConfigurableFieldfor this task.
 - Examples - Provides a convenient way to specify this task is a subtask of another task. - Here is an example of use: - class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task") 
- doc : 
 - 
makeSubtask(name, **keyArgs)¶
- Create a subtask as a new instance as the - nameattribute of this task.- Parameters: - name : str
- Brief name of the subtask. 
- keyArgs
- Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden: - “config”.
- “parentTask”.
 
 - Notes - The subtask must be defined by - Task.config.name, an instance of- ConfigurableFieldor- RegistryField.
- name : 
 - 
run(measurements)¶
- Run the MetricTask on in-memory data. - Parameters: - **kwargs
- Keyword arguments matching the inputs given in the class config; see - lsst.pipe.base.PipelineTask.runfor more details.
 - Returns: - struct : lsst.pipe.base.Struct
- A - Structcontaining at least the following component:- measurement: the value of the metric (- lsst.verify.Measurementor- None). This method is not responsible for adding mandatory metadata (e.g., the data ID); this is handled by the caller.
 
 - Raises: - lsst.verify.tasks.MetricComputationError
- Raised if an algorithmic or system error prevents calculation of the metric. Examples include corrupted input data or unavoidable exceptions raised by analysis code. The - MetricComputationErrorshould be chained to a more specific exception describing the root cause.- Not having enough data for a metric to be applicable is not an error, and should not trigger this exception. 
 - Notes - All input data must be treated as optional. This maximizes the - MetricTask’s usefulness for incomplete pipeline runs or runs with optional processing steps. If a metric cannot be calculated because the necessary inputs are missing, the- MetricTaskmust return- Nonein place of the measurement.
 - 
runQuantum(butlerQC, inputRefs, outputRefs)¶
- Do Butler I/O to provide in-memory objects for run. - This specialization of runQuantum performs error-handling specific to MetricTasks. Most or all of this functionality may be moved to activators in the future. 
 - 
timer(name, logLevel=10)¶
- Context manager to log performance data for an arbitrary block of code. - Parameters: - See also - timer.logInfo
 - Examples - Creating a timer context: - with self.timer("someCodeToTime"): pass # code to time 
 
-