ButlerLogRecords¶
- class lsst.daf.butler.ButlerLogRecords(*, __root__: List[ButlerLogRecord])¶
Bases:
BaseModel
Class representing a collection of
ButlerLogRecord
.Attributes Summary
Methods Summary
append
(value)clear
()construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
extend
(records)from_file
(filename)Read records from file.
from_orm
(obj)from_raw
(serialized)Parse raw serialized form and return records.
from_records
(records)Create collection from iterable.
from_stream
(stream)Read records from I/O stream.
insert
(index, value)json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model,
include
andexclude
arguments as perdict()
.parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])pop
([index])reverse
()schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])set_log_format
(format)Set the log format string for these records.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
(value)Attributes Documentation
- log_format¶
Methods Documentation
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if
Config.extra = 'allow'
was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters:
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to
True
to make a deep copy of the model
- Returns:
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_file(filename: str) ButlerLogRecords ¶
Read records from file.
- Parameters:
- filename
str
Name of file containing the JSON records.
- filename
Notes
Works with one-record-per-line format JSON files and a direct serialization of the Pydantic model.
- classmethod from_raw(serialized: Union[str, bytes]) ButlerLogRecords ¶
Parse raw serialized form and return records.
- classmethod from_records(records: Iterable[ButlerLogRecord]) ButlerLogRecords ¶
Create collection from iterable.
- Parameters:
- recordsiterable of
ButlerLogRecord
The records to seed this class with.
- recordsiterable of
- classmethod from_stream(stream: IO) ButlerLogRecords ¶
Read records from I/O stream.
- Parameters:
- stream
typing.IO
Stream from which to read JSON records.
- stream
Notes
Works with one-record-per-line format JSON files and a direct serialization of the Pydantic model.
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model,
include
andexclude
arguments as perdict()
.encoder
is an optional function to supply asdefault
to json.dumps(), other arguments as perjson.dumps()
.
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶