MemoryMetricTask

MemoryMetricTask creates a resident set size Measurement based on data collected by @timeMethod. It reads the raw timing data from the top-level PipelineTask’s metadata, which is identified by the task configuration.

@timeMethod measures the peak memory usage from process start, so the results can be contaminated by previous quanta (different tasks, data IDs, or both) run on the same process. Interpret the results with care.

Because @timeMethod gives platform-dependent results, this task may give incorrect results (e.g., units) when run in a distributed system with heterogeneous nodes.

Processing summary

MemoryMetricTask searches the metadata for @timeMethod-generated keys corresponding to the method of interest. If it finds matching keys, it stores the maximum memory usage as a Measurement.

Python API summary

from lsst.verify.tasks.commonMetrics import MemoryMetricTask
classMemoryMetricTask(**kwargs)

A Task that computes the maximum resident set size using metadata produced by the `lsst.utils.timer.timeMethod` decorator...

attributeconfig

Access configuration fields and retargetable subtasks.

methodrun(metadata)

Compute a measurement from science task metadata...

See also

See the MemoryMetricTask API reference for complete details.

Butler datasets

Input datasets

metadata

The metadata of the top-level pipeline task (e.g., CharacterizeImageTask, DiaPipeTask) being instrumented.

Output datasets

measurement

The value of the metric. The dataset type should not be configured directly, but should be set changing the package and metric template variables to the metric’s namespace (package, by convention) and in-package name, respectively. Subclasses that only support one metric should set these variables automatically.

Retargetable subtasks

No subtasks.

Configuration fields

connections

Data type

lsst.pipe.base.config.Connections

Field type

ConfigField

Configurations describing the connections of the PipelineTask to datatypes

metadataDimensions

Default
['detector', 'instrument', 'visit']
Field type

str ListField

Override for the dimensions of the ‘metadata’ input, when instrumenting Tasks that don’t produce one metadata object per visit.

saveLogOutput

Default
True
Field type

bool Field

Flag to enable/disable saving of log output for a task, enabled by default.

saveMetadata

Default
True
Field type

bool Field

Flag to enable/disable metadata saving for a task, enabled by default.

target

Default
None
Field type

str Field

The method to profile, optionally prefixed by one or more tasks in the format of lsst.pipe.base.Task.getFullMetadata().

Examples

from lsst.verify.tasks import MemoryMetricTask

config = MemoryMetricTask.ConfigClass()
config.connections.metadata = "apPipe_metadata"
config.connections.package = "pipe_tasks"
cofig.connections.metric = "ProcessCcdMemory"
config.target = "apPipe:ccdProcessor.runDataRef"
task = MemoryMetricTask(config=config)

# config.connections provided for benefit of Pipeline
# but since we've defined it we might as well use it
metadata = butler.get(config.connections.metadata)
processCcdTime = task.run(metadata).measurement