SpherePoint¶
- class lsst.geom.SpherePoint¶
Bases:
pybind11_object
Methods Summary
atPole
(self)bearingTo
(self, other)getDec
(self)getLatitude
(self)getLongitude
(self)getPosition
(self, units)getRa
(self)getTangentPlaneOffset
(self, other)getVector
(self)isFinite
(self)offset
(self, bearing, amount)rotated
(self, axis, amount)separation
(self, other)toUnitXYZ
(*[, longitude, latitude, ra, dec])Compute the unit 3-vectors (as separate arrays) corresponding to arrays of longitude and latitude.
Methods Documentation
- atPole(self: lsst.geom.SpherePoint) bool ¶
- bearingTo(self: lsst.geom.SpherePoint, other: lsst.geom.SpherePoint) lsst.geom.Angle ¶
- getDec(self: lsst.geom.SpherePoint) lsst.geom.Angle ¶
- getLatitude(self: lsst.geom.SpherePoint) lsst.geom.Angle ¶
- getLongitude(self: lsst.geom.SpherePoint) lsst.geom.Angle ¶
- getPosition(self: lsst.geom.SpherePoint, units: lsst.geom.AngleUnit) lsst.geom.Point2D ¶
- getRa(self: lsst.geom.SpherePoint) lsst.geom.Angle ¶
- getTangentPlaneOffset(self: lsst.geom.SpherePoint, other: lsst.geom.SpherePoint) Tuple[lsst.geom.Angle, lsst.geom.Angle] ¶
- getVector(self: lsst.geom.SpherePoint) lsst.sphgeom._sphgeom.UnitVector3d ¶
- isFinite(self: lsst.geom.SpherePoint) bool ¶
- offset(self: lsst.geom.SpherePoint, bearing: lsst.geom.Angle, amount: lsst.geom.Angle) lsst.geom.SpherePoint ¶
- rotated(self: lsst.geom.SpherePoint, axis: lsst.geom.SpherePoint, amount: lsst.geom.Angle) lsst.geom.SpherePoint ¶
- separation(self: lsst.geom.SpherePoint, other: lsst.geom.SpherePoint) lsst.geom.Angle ¶
- static toUnitXYZ(*, longitude=None, latitude=None, ra=None, dec=None, units)¶
Compute the unit 3-vectors (as separate arrays) corresponding to arrays of longitude and latitude.
- Parameters:
- longitude
float
ornumpy.ndarray
Longitude coordinate of input points.
- latitude
float
ornumpy.ndarray
Latitude coordinate of input points.
- ra
float
ornumpy.ndarray
Synonym for
longitude
.- dec
float
ornumpy.ndarray
Synonym for
latitude
.- units
AngleUnit
Angle unit for inputs.
- longitude
- Returns:
Notes
The returned Cartesian coordinate values are not guaranteed to be normalized according to the conventions of
sphgeom.UnitVector3d
, but are nevertheless compatible with the various vectorizedcontains
methods insphgeom
because those apply that normalization internally.