RBTransiNetInterface¶
- class lsst.meas.transiNet.RBTransiNetInterface(task, device='cpu')¶
- Bases: - object- The interface between the LSST AP pipeline and a trained pytorch-based RBTransiNet neural network model. - Parameters:
- tasklsst.meas.transiNet.RBTransiNetTask
- The task that is using this interface: the ‘left side’. 
- model_package_namestr
- Name of the model package to load. 
- package_storage_mode{‘local’, ‘neighbor’}
- Storage mode of the model package 
- devicestr
- Device to load and run the neural network on, e.g. ‘cpu’ or ‘cuda:0’ 
 
- task
 - Methods Summary - infer(inputs)- Return the score of this cutout. - Create and initialize an NN model - input_to_batches(inputs, batchSize)- Convert a list of inputs to a generator of batches. - prepare_input(inputs)- Convert inputs from numpy arrays, etc. - Methods Documentation - infer(inputs)¶
- Return the score of this cutout. - Parameters:
- inputslist[CutoutInputs]
- Inputs to be scored. 
 
- inputs
- Returns:
- scoresnumpy.array
- Float scores for each element of - inputs.
 
- scores
 
 - init_model()¶
- Create and initialize an NN model 
 - input_to_batches(inputs, batchSize)¶
- Convert a list of inputs to a generator of batches. - Parameters:
- inputslist[CutoutInputs]
- Inputs to be scored. 
 
- inputs
- Returns:
- batchesgenerator
- Generator of batches of inputs. 
 
- batches
 
 - prepare_input(inputs)¶
- Convert inputs from numpy arrays, etc. to a torch.tensor blob. - Parameters:
- inputslist[CutoutInputs]
- Inputs to be scored. 
 
- inputs
- Returns:
- blob
- Prepared torch tensor blob to run the model on. 
- labels
- Truth labels, concatenated into a single list.