SnapPsfMatchConfigAL¶
-
class
lsst.ip.diffim.SnapPsfMatchConfigAL¶ Bases:
lsst.ip.diffim.PsfMatchConfigALSum-of-Gaussian (Alard-Lupton) Psf-matching config optimized for snap subtraction
Attributes Summary
afwBackgroundConfigControlling the Afw background fitting ( SubtractBackgroundConfig, default<class 'lsst.meas.algorithms.subtractBackground.SubtractBackgroundConfig'>)alardDegGaussPolynomial order of spatial modification of Gaussians. alardDegGaussDeconvDegree of spatial modification of ALL gaussians in AL basis during deconvolution ( int, default3)alardGaussBetaDefault scale factor between Gaussian sigmas ( float, default2.0)alardMinSigMinimum Sigma (pixels) for Gaussians ( float, default0.7)alardMinSigDeconvMinimum Sigma (pixels) for Gaussians during deconvolution; make smaller than alardMinSig as this is only indirectly used ( float, default0.4)alardNGaussNumber of Gaussians in alard-lupton basis ( int, default3)alardNGaussDeconvNumber of Gaussians in AL basis during deconvolution ( int, default3)alardSigGaussSigma in pixels of Gaussians (FWHM = 2.35 sigma). badMaskPlanesMask planes to ignore when calculating diffim statistics Options: NO_DATA EDGE SAT BAD CR INTRP ( List, default('NO_DATA', 'EDGE', 'SAT'))calculateKernelUncertaintyCalculate kernel and background uncertainties for each kernel candidate? This comes from the inverse of the covariance matrix. candidateCoreRadiusRadius for calculation of stats in ‘core’ of KernelCandidate diffim. candidateResidualMeanMaxRejects KernelCandidates yielding bad difference image quality. candidateResidualStdMaxRejects KernelCandidates yielding bad difference image quality. checkConditionNumberTest for maximum condition number when inverting a kernel matrix. conditionNumberTypeUse singular values (SVD) or eigen values (EIGENVALUE) to determine condition number ( str, default'EIGENVALUE')constantVarianceWeightingUse constant variance weighting in single kernel fitting? In some cases this is better for bright star residuals. detectionConfigControlling the detection of sources for kernel building ( DetectionConfig, default<class 'lsst.ip.diffim.psfMatch.DetectionConfig'>)fitForBackgroundInclude terms (including kernel cross terms) for background in ip_diffim ( bool, defaultFalse)historyiterateSingleKernelRemake KernelCandidate using better variance estimate after first pass? Primarily useful when convolving a single-depth image, otherwise not necessary. kernelBasisSetType of basis set for PSF matching kernel. kernelSizeNumber of rows/columns in the convolution kernel; should be odd-valued. kernelSizeFwhmScalingHow much to scale the kernel size based on the largest AL Sigma ( float, default6.0)kernelSizeMaxMaximum Kernel Size ( int, default35)kernelSizeMinMinimum Kernel Size ( int, default21)kernelSumClippingDo sigma clipping on the ensemble of kernel sums ( bool, defaultTrue)maxConditionNumberMaximum condition number for a well conditioned matrix ( float, default50000000.0)maxKsumSigmaMaximum allowed sigma for outliers from kernel sum distribution. maxSpatialConditionNumberMaximum condition number for a well conditioned spatial matrix ( float, default10000000000.0)maxSpatialIterationsMaximum number of iterations for rejecting bad KernelCandidates in spatial fitting ( int, default3)nStarPerCellNumber of KernelCandidates in each SpatialCell to use in the spatial fitting ( int, default3)numPrincipalComponentsNumber of principal components to use for Pca basis, including the mean kernel if requested. scaleByFwhmScale kernelSize, alardGaussians by input Fwhm ( bool, defaultTrue)singleKernelClippingDo sigma clipping on each raw kernel candidate ( bool, defaultTrue)sizeCellXSize (rows) in pixels of each SpatialCell for spatial modeling ( int, default128)sizeCellYSize (columns) in pixels of each SpatialCell for spatial modeling ( int, default128)spatialBgOrderSpatial order of differential background variation ( int, default1)spatialKernelClippingDo sigma clipping after building the spatial model ( bool, defaultTrue)spatialKernelOrderSpatial order of convolution kernel variation ( int, default2)spatialModelTypeType of spatial functions for kernel and background ( str, default'chebyshev1')subtractMeanForPcaSubtract off the mean feature before doing the Pca ( bool, defaultTrue)useAfwBackgroundUse afw background subtraction instead of ip_diffim ( bool, defaultFalse)useBicForKernelBasisUse Bayesian Information Criterion to select the number of bases going into the kernel ( bool, defaultFalse)useCoreStatsUse the core of the footprint for the quality statistics, instead of the entire footprint. usePcaForSpatialKernelUse Pca to reduce the dimensionality of the kernel basis sets. warpingConfigConfig for warping exposures to a common alignment ( WarperConfig, default<class 'lsst.afw.math.warper.WarperConfig'>)Methods Summary
compare(other[, shortcut, rtol, atol, output])!Compare two Configs for equality; return True if equal formatHistory(name, **kwargs)!Format the specified config field’s history to a more human-readable format freeze()!Make this Config and all sub-configs read-only items()!Return the list of (field name, field value) pairs iteritems()!Iterate over (field name, field value) pairs iterkeys()!Iterate over field names itervalues()!Iterate over field values keys()!Return the list of field names load(filename[, root])!Modify this config in place by executing the Python code in the named file. loadFromStream(stream[, root, filename])!Modify this config in place by executing the python code in the provided stream. names()!Return all the keys in a config recursively save(filename[, root])!Save a python script to the named file, which, when loaded, reproduces this Config saveToStream(outfile[, root])!Save a python script to a stream, which, when loaded, reproduces this Config setDefaults()Derived config classes that must compute defaults rather than using the Field defaults should do so here. toDict()!Return a dict of field name: value update(**kw)!Update values specified by the keyword arguments validate()!Validate the Config; raise an exception if invalid values()!Return the list of field values Attributes Documentation
-
afwBackgroundConfig¶ Controlling the Afw background fitting (
SubtractBackgroundConfig, default<class 'lsst.meas.algorithms.subtractBackground.SubtractBackgroundConfig'>)
-
alardDegGauss¶ Polynomial order of spatial modification of Gaussians. Must in number equal alardNGauss (
List, default(4, 2, 2))
-
alardDegGaussDeconv¶ Degree of spatial modification of ALL gaussians in AL basis during deconvolution (
int, default3)
-
alardMinSigDeconv¶ Minimum Sigma (pixels) for Gaussians during deconvolution; make smaller than alardMinSig as this is only indirectly used (
float, default0.4)
-
alardSigGauss¶ Sigma in pixels of Gaussians (FWHM = 2.35 sigma). Must in number equal alardNGauss (
List, default(0.7, 1.5, 3.0))
-
badMaskPlanes¶ Mask planes to ignore when calculating diffim statistics Options: NO_DATA EDGE SAT BAD CR INTRP (
List, default('NO_DATA', 'EDGE', 'SAT'))
-
calculateKernelUncertainty¶ Calculate kernel and background uncertainties for each kernel candidate? This comes from the inverse of the covariance matrix. Warning: regularization can cause problems for this step. (
bool, defaultFalse)
-
candidateCoreRadius¶ Radius for calculation of stats in ‘core’ of KernelCandidate diffim. Total number of pixels used will be (2*radius)**2. This is used both for ‘core’ diffim quality as well as ranking of KernelCandidates by their total flux in this core (
int, default3)
-
candidateResidualMeanMax¶ Rejects KernelCandidates yielding bad difference image quality. Used by BuildSingleKernelVisitor, AssessSpatialKernelVisitor. Represents average over pixels of (image/sqrt(variance)). (
float, default0.25)
-
candidateResidualStdMax¶ Rejects KernelCandidates yielding bad difference image quality. Used by BuildSingleKernelVisitor, AssessSpatialKernelVisitor. Represents stddev over pixels of (image/sqrt(variance)). (
float, default1.5)
-
checkConditionNumber¶ Test for maximum condition number when inverting a kernel matrix. Anything above maxConditionNumber is not used and the candidate is set as BAD. Also used to truncate inverse matrix in estimateBiasedRisk. However, if you are doing any deconvolution you will want to turn this off, or use a large maxConditionNumber (
bool, defaultFalse)
-
conditionNumberType¶ Use singular values (SVD) or eigen values (EIGENVALUE) to determine condition number (
str, default'EIGENVALUE')Allowed values:
'SVD'- Use singular values
'EIGENVALUE'- Use eigen values (faster)
'None'- Field is optional
-
constantVarianceWeighting¶ Use constant variance weighting in single kernel fitting? In some cases this is better for bright star residuals. (
bool, defaultTrue)
-
detectionConfig¶ Controlling the detection of sources for kernel building (
DetectionConfig, default<class 'lsst.ip.diffim.psfMatch.DetectionConfig'>)
-
fitForBackground¶ Include terms (including kernel cross terms) for background in ip_diffim (
bool, defaultFalse)
-
history¶
-
iterateSingleKernel¶ Remake KernelCandidate using better variance estimate after first pass? Primarily useful when convolving a single-depth image, otherwise not necessary. (
bool, defaultFalse)
-
kernelBasisSet¶ Type of basis set for PSF matching kernel. (
str, default'alard-lupton')Allowed values:
'alard-lupton'- Alard-Lupton sum-of-gaussians basis set,
- The first term has no spatial variation
- The kernel sum is conserved
- You may want to turn off ‘usePcaForSpatialKernel’
'delta-function'- Delta-function kernel basis set,
- You may enable the option useRegularization
- You should seriously consider usePcaForSpatialKernel, which will also enable kernel sum conservation for the delta function kernels
'None'- Field is optional
-
kernelSize¶ Number of rows/columns in the convolution kernel; should be odd-valued. Modified by kernelSizeFwhmScaling if scaleByFwhm = true (
int, default21)
-
kernelSizeFwhmScaling¶ How much to scale the kernel size based on the largest AL Sigma (
float, default6.0)
-
maxConditionNumber¶ Maximum condition number for a well conditioned matrix (
float, default50000000.0)
-
maxKsumSigma¶ Maximum allowed sigma for outliers from kernel sum distribution. Used to reject variable objects from the kernel model (
float, default3.0)
-
maxSpatialConditionNumber¶ Maximum condition number for a well conditioned spatial matrix (
float, default10000000000.0)
-
maxSpatialIterations¶ Maximum number of iterations for rejecting bad KernelCandidates in spatial fitting (
int, default3)
-
nStarPerCell¶ Number of KernelCandidates in each SpatialCell to use in the spatial fitting (
int, default3)
-
numPrincipalComponents¶ Number of principal components to use for Pca basis, including the mean kernel if requested. (
int, default5)
-
spatialModelType¶ Type of spatial functions for kernel and background (
str, default'chebyshev1')Allowed values:
'chebyshev1'- Chebyshev polynomial of the first kind
'polynomial'- Standard x,y polynomial
'None'- Field is optional
-
useBicForKernelBasis¶ Use Bayesian Information Criterion to select the number of bases going into the kernel (
bool, defaultFalse)
-
useCoreStats¶ Use the core of the footprint for the quality statistics, instead of the entire footprint. WARNING: if there is deconvolution we probably will need to turn this off (
bool, defaultFalse)
-
usePcaForSpatialKernel¶ Use Pca to reduce the dimensionality of the kernel basis sets. This is particularly useful for delta-function kernels. Functionally, after all Cells have their raw kernels determined, we run a Pca on these Kernels, re-fit the Cells using the eigenKernels and then fit those for spatial variation using the same technique as for Alard-Lupton kernels. If this option is used, the first term will have no spatial variation and the kernel sum will be conserved. (
bool, defaultFalse)
-
warpingConfig¶ Config for warping exposures to a common alignment (
WarperConfig, default<class 'lsst.afw.math.warper.WarperConfig'>)
Methods Documentation
-
compare(other, shortcut=True, rtol=1e-08, atol=1e-08, output=None)¶ !Compare two Configs for equality; return True if equal
If the Configs contain RegistryFields or ConfigChoiceFields, unselected Configs will not be compared.
@param[in] other Config object to compare with self. @param[in] shortcut If True, return as soon as an inequality is found. @param[in] rtol Relative tolerance for floating point comparisons. @param[in] atol Absolute tolerance for floating point comparisons. @param[in] output If not None, a callable that takes a string, used (possibly repeatedly)
to report inequalities.Floating point comparisons are performed by numpy.allclose; refer to that for details.
-
formatHistory(name, **kwargs)¶ !Format the specified config field’s history to a more human-readable format
@param[in] name name of field whose history is wanted @param[in] kwargs keyword arguments for lsst.pex.config.history.format @return a string containing the formatted history
-
freeze()¶ !Make this Config and all sub-configs read-only
-
items()¶ !Return the list of (field name, field value) pairs
-
iteritems()¶ !Iterate over (field name, field value) pairs
-
iterkeys()¶ !Iterate over field names
-
itervalues()¶ !Iterate over field values
-
keys()¶ !Return the list of field names
-
load(filename, root='config')¶ !Modify this config in place by executing the Python code in the named file.
@param[in] filename name of file containing config override code @param[in] root name of variable in file that refers to the config being overridden
For example: if the value of root is “config” and the file contains this text: “config.myField = 5” then this config’s field “myField” is set to 5.
@deprecated For purposes of backwards compatibility, older config files that use root=”root” instead of root=”config” will be loaded with a warning printed to sys.stderr. This feature will be removed at some point.
-
loadFromStream(stream, root='config', filename=None)¶ !Modify this config in place by executing the python code in the provided stream.
@param[in] stream open file object, string or compiled string containing config override code @param[in] root name of variable in stream that refers to the config being overridden @param[in] filename name of config override file, or None if unknown or contained
in the stream; used for error reportingFor example: if the value of root is “config” and the stream contains this text: “config.myField = 5” then this config’s field “myField” is set to 5.
@deprecated For purposes of backwards compatibility, older config files that use root=”root” instead of root=”config” will be loaded with a warning printed to sys.stderr. This feature will be removed at some point.
-
names()¶ !Return all the keys in a config recursively
-
save(filename, root='config')¶ !Save a python script to the named file, which, when loaded, reproduces this Config
@param[in] filename name of file to which to write the config @param[in] root name to use for the root config variable; the same value must be used when loading
-
saveToStream(outfile, root='config')¶ !Save a python script to a stream, which, when loaded, reproduces this Config
@param outfile [inout] open file object to which to write the config. Accepts strings not bytes. @param root [in] name to use for the root config variable; the same value must be used when loading
-
setDefaults()¶ Derived config classes that must compute defaults rather than using the Field defaults should do so here. To correctly use inherited defaults, implementations of setDefaults() must call their base class’ setDefaults()
-
toDict()¶ !Return a dict of field name: value
Correct behavior is dependent on proper implementation of Field.toDict. If implementing a new Field type, you may need to implement your own toDict method.
-
update(**kw)¶ !Update values specified by the keyword arguments
@warning The ‘__at’ and ‘__label’ keyword arguments are special internal keywords. They are used to strip out any internal steps from the history tracebacks of the config. Modifying these keywords allows users to lie about a Config’s history. Please do not do so!
-
validate()¶ !Validate the Config; raise an exception if invalid
The base class implementation performs type checks on all fields by calling Field.validate().
Complex single-field validation can be defined by deriving new Field types. As syntactic sugar, some derived Field types are defined in this module which handle recursing into sub-configs (ConfigField, ConfigChoiceField)
Inter-field relationships should only be checked in derived Config classes after calling this method, and base validation is complete
-
values()¶ !Return the list of field values
-