Registry¶
- 
class lsst.daf.butler.Registry(database: Database, universe: DimensionUniverse, *, attributes: Type[ButlerAttributeManager], opaque: Type[OpaqueTableStorageManager], dimensions: Type[DimensionRecordStorageManager], collections: Type[CollectionManager], datasets: Type[DatasetRecordStorageManager], datastoreBridges: Type[DatastoreRegistryBridgeManager], versions: ButlerVersionsManager, writeable: bool = True, create: bool = False)¶
- Bases: - object- Registry interface. - Parameters: - config : ButlerConfig,RegistryConfig,Configorstr
- Registry configuration 
 - Attributes Summary - defaultConfigFile- Path to configuration defaults. - dimensions- All dimensions recognized by this - Registry(- DimensionUniverse).- Methods Summary - associate(collection, refs)- Add existing datasets to a - TAGGEDcollection.- deleteOpaqueData(tableName, **where)- Remove records from an opaque table. - disassociate(collection, refs)- Remove existing datasets from a - TAGGEDcollection.- expandDataId(dataId, Mapping[str, Any], …)- Expand a dimension-based data ID to include additional information. - fetchOpaqueData(tableName, **where)- Retrieve records from an opaque table. - findDataset(datasetType, str], dataId, …)- Find a dataset given its - DatasetTypeand data ID.- fromConfig(config, RegistryConfig, Config, …)- Create - Registrysubclass instance from- config.- getCollectionChain(parent)- Return the child collections in a - CHAINEDcollection.- getCollectionType(name)- Return an enumeration value indicating the type of the given collection. - getDataset(id)- Retrieve a Dataset entry. - getDatasetLocations(ref)- Retrieve datastore locations for a given dataset. - getDatasetType(name)- Get the - DatasetType.- getDatastoreBridgeManager()- Return an object that allows a new - Datastoreinstance to communicate with this- Registry.- insertDatasets(datasetType, str], dataIds, …)- Insert one or more datasets into the - Registry- insertDimensionData(element, str], *data, …)- Insert one or more dimension records into the database. - insertOpaqueData(tableName, *data)- Insert records into an opaque table. - isWriteable()- Return - Trueif this registry allows write operations, and- Falseotherwise.- makeQueryBuilder(summary)- Return a - QueryBuilderinstance capable of constructing and managing more complex queries than those obtainable via- Registryinterfaces.- queryCollections(expression, datasetType, …)- Iterate over the collections whose names match an expression. - queryDatasetTypes(expression, *, components)- Iterate over the dataset types whose names match an expression. - queryDatasets(datasetType, *, collections, …)- Query for and iterate over dataset references matching user-provided criteria. - queryDimensions(dimensions, str]], …)- Query for and iterate over data IDs matching user-provided criteria. - registerCollection(name, type)- Add a new collection if one with the given name does not exist. - registerDatasetType(datasetType)- Add a new - DatasetTypeto the Registry.- registerOpaqueTable(tableName, spec)- Add an opaque (to the - Registry) table for use by a- Datastoreor other data repository client.- registerRun(name)- Add a new run if one with the given name does not exist. - removeCollection(name)- Completely remove the given collection. - removeDatasets(refs)- Remove datasets from the Registry. - setCollectionChain(parent, children)- Define or redefine a - CHAINEDcollection.- syncDimensionData(element, str], row, Any], …)- Synchronize the given dimension record with the database, inserting if it does not already exist and comparing values if it does. - transaction()- Return a context manager that represents a transaction. - Attributes Documentation - 
defaultConfigFile= None¶
- Path to configuration defaults. Relative to $DAF_BUTLER_DIR/config or absolute path. Can be None if no defaults specified. 
 - 
dimensions¶
- All dimensions recognized by this - Registry(- DimensionUniverse).
 - Methods Documentation - 
associate(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶
- Add existing datasets to a - TAGGEDcollection.- If a DatasetRef with the same exact integer ID is already in a collection nothing is changed. If a - DatasetRefwith the same- DatasetTypeand data ID but with different integer ID exists in the collection,- ConflictingDefinitionErroris raised.- Parameters: - collection : str
- Indicates the collection the datasets should be associated with. 
- refs : Iterable[DatasetRef]
- An iterable of resolved - DatasetRefinstances that already exist in this- Registry.
 - Raises: - ConflictingDefinitionError
- If a Dataset with the given - DatasetRefalready exists in the given collection.
- AmbiguousDatasetError
- Raised if - any(ref.id is None for ref in refs).
- MissingCollectionError
- Raised if - collectiondoes not exist in the registry.
- TypeError
- Raise adding new datasets to the given - collectionis not allowed.
 
- collection : 
 - 
deleteOpaqueData(tableName: str, **where) → None¶
- Remove records from an opaque table. - Parameters: - tableName : str
- Logical name of the opaque table. Must match the name used in a previous call to - registerOpaqueTable.
- where
- Additional keyword arguments are interpreted as equality constraints that restrict the deleted rows (combined with AND); keyword arguments are column names and values are the values they must have. 
 
- tableName : 
 - 
disassociate(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶
- Remove existing datasets from a - TAGGEDcollection.- collectionand- refcombinations that are not currently associated are silently ignored.- Parameters: - collection : str
- The collection the datasets should no longer be associated with. 
- refs : Iterable[DatasetRef]
- An iterable of resolved - DatasetRefinstances that already exist in this- Registry.
 - Raises: - AmbiguousDatasetError
- Raised if any of the given dataset references is unresolved. 
- MissingCollectionError
- Raised if - collectiondoes not exist in the registry.
- TypeError
- Raise adding new datasets to the given - collectionis not allowed.
 
- collection : 
 - 
expandDataId(dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, graph: Optional[lsst.daf.butler.core.dimensions.graph.DimensionGraph] = None, records: Optional[Mapping[lsst.daf.butler.core.dimensions.elements.DimensionElement, Optional[lsst.daf.butler.core.dimensions.records.DimensionRecord]]] = None, **kwargs) → lsst.daf.butler.core.dimensions.coordinate.ExpandedDataCoordinate¶
- Expand a dimension-based data ID to include additional information. - Parameters: - dataId : DataCoordinateordict, optional
- Data ID to be expanded; augmented and overridden by - kwds.
- graph : DimensionGraph, optional
- Set of dimensions for the expanded ID. If - None, the dimensions will be inferred from the keys of- dataIdand- kwds. Dimensions that are in- dataIdor- kwdsbut not in- graphare silently ignored, providing a way to extract and expand a subset of a data ID.
- records : Mapping[DimensionElement,DimensionRecord], optional
- Dimension record data to use before querying the database for that data. 
- **kwargs
- Additional keywords are treated like additional key-value pairs for - dataId, extending and overriding
 - Returns: - expanded : ExpandedDataCoordinate
- A data ID that includes full metadata for all of the dimensions it identifieds. 
 
- dataId : 
 - 
fetchOpaqueData(tableName: str, **where) → Iterator[dict]¶
- Retrieve records from an opaque table. - Parameters: - tableName : str
- Logical name of the opaque table. Must match the name used in a previous call to - registerOpaqueTable.
- where
- Additional keyword arguments are interpreted as equality constraints that restrict the returned rows (combined with AND); keyword arguments are column names and values are the values they must have. 
 - Yields: - row : dict
- A dictionary representing a single result row. 
 
- tableName : 
 - 
findDataset(datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, collections: Any, **kwargs) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶
- Find a dataset given its - DatasetTypeand data ID.- This can be used to obtain a - DatasetRefthat permits the dataset to be read from a- Datastore. If the dataset is a component and can not be found using the provided dataset type, a dataset ref for the parent will be returned instead but with the correct dataset type.- Parameters: - datasetType : DatasetTypeorstr
- A - DatasetTypeor the name of one.
- dataId : dictorDataCoordinate, optional
- A - dict-like object containing the- Dimensionlinks that identify the dataset within a collection.
- collections
- An expression that fully or partially identifies the collections to search for the dataset, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all collections. See Collection expressions for more information.
- **kwargs
- Additional keyword arguments passed to - DataCoordinate.standardizeto convert- dataIdto a true- DataCoordinateor augment an existing one.
 - Returns: - ref : DatasetRef
- A reference to the dataset, or - Noneif no matching Dataset was found.
 - Raises: - LookupError
- Raised if one or more data ID keys are missing or the dataset type does not exist. 
- MissingCollectionError
- Raised if any of - collectionsdoes not exist in the registry.
 
- datasetType : 
 - 
classmethod fromConfig(config: Union[ButlerConfig, RegistryConfig, Config, str], create: bool = False, butlerRoot: Optional[str] = None, writeable: bool = True) → Registry¶
- Create - Registrysubclass instance from- config.- Uses - registry.clsfrom- configto determine which subclass to instantiate.- Parameters: - config : ButlerConfig,RegistryConfig,Configorstr
- Registry configuration 
- create : bool, optional
- Assume empty Registry and create a new one. 
- butlerRoot : str, optional
- Path to the repository root this - Registrywill manage.
- writeable : bool, optional
- If - True(default) create a read-write connection to the database.
 - Returns: 
- config : 
 - 
getCollectionChain(parent: str) → lsst.daf.butler.registry.wildcards.CollectionSearch¶
- Return the child collections in a - CHAINEDcollection.- Parameters: - parent : str
- Name of the chained collection. Must have already been added via a call to - Registry.registerCollection.
 - Returns: - children : CollectionSearch
- An object that defines the search path of the collection. See Collection expressions for more information. 
 - Raises: 
- parent : 
 - 
getCollectionType(name: str) → lsst.daf.butler.registry._collectionType.CollectionType¶
- Return an enumeration value indicating the type of the given collection. - Parameters: - name : str
- The name of the collection. 
 - Returns: - type : CollectionType
- Enum value indicating the type of this collection. 
 - Raises: - MissingCollectionError
- Raised if no collection with the given name exists. 
 
- name : 
 - 
getDataset(id: int) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶
- Retrieve a Dataset entry. - Parameters: - id : int
- The unique identifier for the dataset. 
 - Returns: - ref : DatasetReforNone
- A ref to the Dataset, or - Noneif no matching Dataset was found.
 
- id : 
 - 
getDatasetLocations(ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → Iterable[str]¶
- Retrieve datastore locations for a given dataset. - Parameters: - ref : DatasetRef
- A reference to the dataset for which to retrieve storage information. 
 - Returns: - datastores : Iterable[str]
- All the matching datastores holding this dataset. 
 - Raises: - AmbiguousDatasetError
- Raised if - ref.idis- None.
 
- ref : 
 - 
getDatasetType(name: str) → lsst.daf.butler.core.datasets.type.DatasetType¶
- Get the - DatasetType.- Parameters: - name : str
- Name of the type. 
 - Returns: - type : DatasetType
- The - DatasetTypeassociated with the given name.
 - Raises: - KeyError
- Requested named DatasetType could not be found in registry. 
 
- name : 
 - 
getDatastoreBridgeManager() → DatastoreRegistryBridgeManager¶
- Return an object that allows a new - Datastoreinstance to communicate with this- Registry.- Returns: - manager : DatastoreRegistryBridgeManager
- Object that mediates communication between this - Registryand its associated datastores.
 
- manager : 
 - 
insertDatasets(datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str], dataIds: Iterable[Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any]]], run: str) → List[lsst.daf.butler.core.datasets.ref.DatasetRef]¶
- Insert one or more datasets into the - Registry- This always adds new datasets; to associate existing datasets with a new collection, use - associate.- Parameters: - datasetType : DatasetTypeorstr
- A - DatasetTypeor the name of one.
- dataIds : IterableofdictorDataCoordinate
- Dimension-based identifiers for the new datasets. 
- run : str
- The name of the run that produced the datasets. 
 - Returns: - refs : listofDatasetRef
- Resolved - DatasetRefinstances for all given data IDs (in the same order).
 - Raises: - ConflictingDefinitionError
- If a dataset with the same dataset type and data ID as one of those given already exists in - run.
- MissingCollectionError
- Raised if - rundoes not exist in the registry.
 
- datasetType : 
 - 
insertDimensionData(element: Union[lsst.daf.butler.core.dimensions.elements.DimensionElement, str], *data, conform: bool = True) → None¶
- Insert one or more dimension records into the database. - Parameters: - element : DimensionElementorstr
- The - DimensionElementor name thereof that identifies the table records will be inserted into.
- data : dictorDimensionRecord(variadic)
- One or more records to insert. 
- conform : bool, optional
- If - False(- Trueis default) perform no checking or conversions, and assume that- elementis a- DimensionElementinstance and- datais a one or more- DimensionRecordinstances of the appropriate subclass.
 
- element : 
 - 
insertOpaqueData(tableName: str, *data) → None¶
- Insert records into an opaque table. - Parameters: - tableName : str
- Logical name of the opaque table. Must match the name used in a previous call to - registerOpaqueTable.
- data
- Each additional positional argument is a dictionary that represents a single row to be added. 
 
- tableName : 
 - 
makeQueryBuilder(summary: lsst.daf.butler.registry.queries._structs.QuerySummary) → lsst.daf.butler.registry.queries._builder.QueryBuilder¶
- Return a - QueryBuilderinstance capable of constructing and managing more complex queries than those obtainable via- Registryinterfaces.- This is an advanced interface; downstream code should prefer - Registry.queryDimensionsand- Registry.queryDatasetswhenever those are sufficient.- Parameters: - summary : QuerySummary
- Object describing and categorizing the full set of dimensions that will be included in the query. 
 - Returns: - builder : QueryBuilder
- Object that can be used to construct and perform advanced queries. 
 
- summary : 
 - 
queryCollections(expression: Any = Ellipsis, datasetType: Optional[lsst.daf.butler.core.datasets.type.DatasetType] = None, collectionType: Optional[lsst.daf.butler.registry._collectionType.CollectionType] = None, flattenChains: bool = False, includeChains: Optional[bool] = None) → Iterator[str]¶
- Iterate over the collections whose names match an expression. - Parameters: - expression : Any, optional
- An expression that fully or partially identifies the collections to return, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all collections, and is the default. See Collection expressions for more information.
- datasetType : DatasetType, optional
- If provided, only yield collections that should be searched for this dataset type according to - expression. If this is not provided, any dataset type restrictions in- expressionare ignored.
- collectionType : CollectionType, optional
- If provided, only yield collections of this type. 
- flattenChains : bool, optional
- If - True(- Falseis default), recursively yield the child collections of matching- CHAINEDcollections.
- includeChains : bool, optional
- If - True, yield records for matching- CHAINEDcollections. Default is the opposite of- flattenChains: include either CHAINED collections or their children, but not both.
 - Yields: - collection : str
- The name of a collection that matches - expression.
 
- expression : 
 - 
queryDatasetTypes(expression: Any = Ellipsis, *, components: Optional[bool] = None) → Iterator[lsst.daf.butler.core.datasets.type.DatasetType]¶
- Iterate over the dataset types whose names match an expression. - Parameters: - expression : Any, optional
- An expression that fully or partially identifies the dataset types to return, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all dataset types, and is the default. See DatasetType expressions for more information.
- components : bool, optional
- If - True, apply all expression patterns to component dataset type names as well. If- False, never apply patterns to components. If- None(default), apply patterns to components only if their parent datasets were not matched by the expression. Fully-specified component datasets (- stror- DatasetTypeinstances) are always included.
 - Yields: - datasetType : DatasetType
- A - DatasetTypeinstance whose name matches- expression.
 
- expression : 
 - 
queryDatasets(datasetType: Any, *, collections: Any, dimensions: Optional[Iterable[Union[lsst.daf.butler.core.dimensions.elements.Dimension, str]]] = None, dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, where: Optional[str] = None, deduplicate: bool = False, expand: bool = True, components: Optional[bool] = None, **kwargs) → Iterator[lsst.daf.butler.core.datasets.ref.DatasetRef]¶
- Query for and iterate over dataset references matching user-provided criteria. - Parameters: - datasetType
- An expression that fully or partially identifies the dataset types to be queried. Allowed types include - DatasetType,- str,- re.Pattern, and iterables thereof. The special value- can be used to query all dataset types. See DatasetType expressions for more information.
- collections
- An expression that fully or partially identifies the collections to search for datasets, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all collections. See Collection expressions for more information.
- dimensions : IterableofDimensionorstr
- Dimensions to include in the query (in addition to those used to identify the queried dataset type(s)), either to constrain the resulting datasets to those for which a matching dimension exists, or to relate the dataset type’s dimensions to dimensions referenced by the - dataIdor- wherearguments.
- dataId : dictorDataCoordinate, optional
- A data ID whose key-value pairs are used as equality constraints in the query. 
- where : str, optional
- A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information. 
- deduplicate : bool, optional
- If - True(- Falseis default), for each result data ID, only yield one- DatasetRefof each- DatasetType, from the first collection in which a dataset of that dataset type appears (according to the order of- collectionspassed in). If- True,- collectionsmust not contain regular expressions and may not be- .
- expand : bool, optional
- If - True(default) attach- ExpandedDataCoordinateinstead of minimal- DataCoordinatebase-class instances.
- components : bool, optional
- If - True, apply all dataset expression patterns to component dataset type names as well. If- False, never apply patterns to components. If- None(default), apply patterns to components only if their parent datasets were not matched by the expression. Fully-specified component datasets (- stror- DatasetTypeinstances) are always included.
- **kwargs
- Additional keyword arguments are forwarded to - DataCoordinate.standardizewhen processing the- dataIdargument (and may be used to provide a constraining data ID even when the- dataIdargument is- None).
 - Yields: - ref : DatasetRef
- Dataset references matching the given query criteria. These are grouped by - DatasetTypeif the query evaluates to multiple dataset types, but order is otherwise unspecified.
 - Raises: - TypeError
- Raised when the arguments are incompatible, such as when a collection wildcard is passed when - deduplicateis- True.
 - Notes - When multiple dataset types are queried in a single call, the results of this operation are equivalent to querying for each dataset type separately in turn, and no information about the relationships between datasets of different types is included. In contexts where that kind of information is important, the recommended pattern is to use - queryDimensionsto first obtain data IDs (possibly with the desired dataset types and collections passed as constraints to the query), and then use multiple (generally much simpler) calls to- queryDatasetswith the returned data IDs passed as constraints.
 - 
queryDimensions(dimensions: Union[Iterable[Union[lsst.daf.butler.core.dimensions.elements.Dimension, str]], lsst.daf.butler.core.dimensions.elements.Dimension, str], *, dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, datasets: Optional[Any] = None, collections: Optional[Any] = None, where: Optional[str] = None, expand: bool = True, components: Optional[bool] = None, **kwargs) → Iterator[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate]¶
- Query for and iterate over data IDs matching user-provided criteria. - Parameters: - dimensions : Dimensionorstr, or iterable thereof
- The dimensions of the data IDs to yield, as either - Dimensioninstances or- str. Will be automatically expanded to a complete- DimensionGraph.
- dataId : dictorDataCoordinate, optional
- A data ID whose key-value pairs are used as equality constraints in the query. 
- datasets : Any, optional
- An expression that fully or partially identifies dataset types that should constrain the yielded data IDs. For example, including “raw” here would constrain the yielded - instrument,- exposure,- detector, and- physical_filtervalues to only those for which at least one “raw” dataset exists in- collections. Allowed types include- DatasetType,- str,- re.Pattern, and iterables thereof. Unlike other dataset type expressions,- is not permitted - it doesn’t make sense to constrain data IDs on the existence of all datasets. See DatasetType expressions for more information.
- collections: `Any`, optional
- An expression that fully or partially identifies the collections to search for datasets, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all collections. Must be provided if- datasetsis, and is ignored if it is not. See Collection expressions for more information.
- where : str, optional
- A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information. 
- expand : bool, optional
- If - True(default) yield- ExpandedDataCoordinateinstead of minimal- DataCoordinatebase-class instances.
- components : bool, optional
- If - True, apply all dataset expression patterns to component dataset type names as well. If- False, never apply patterns to components. If- None(default), apply patterns to components only if their parent datasets were not matched by the expression. Fully-specified component datasets (- stror- DatasetTypeinstances) are always included.
- **kwargs
- Additional keyword arguments are forwarded to - DataCoordinate.standardizewhen processing the- dataIdargument (and may be used to provide a constraining data ID even when the- dataIdargument is- None).
 - Yields: - dataId : DataCoordinate
- Data IDs matching the given query parameters. Order is unspecified. 
 
- dimensions : 
 - 
registerCollection(name: str, type: lsst.daf.butler.registry._collectionType.CollectionType = <CollectionType.TAGGED: 2>) → None¶
- Add a new collection if one with the given name does not exist. - Parameters: - name : str
- The name of the collection to create. 
- type : CollectionType
- Enum value indicating the type of collection to create. 
 - Notes - This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent. 
- name : 
 - 
registerDatasetType(datasetType: lsst.daf.butler.core.datasets.type.DatasetType) → bool¶
- Add a new - DatasetTypeto the Registry.- It is not an error to register the same - DatasetTypetwice.- Parameters: - datasetType : DatasetType
- The - DatasetTypeto be added.
 - Returns: - Raises: - ValueError
- Raised if the dimensions or storage class are invalid. 
- ConflictingDefinitionError
- Raised if this DatasetType is already registered with a different definition. 
 - Notes - This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent. 
- datasetType : 
 - 
registerOpaqueTable(tableName: str, spec: lsst.daf.butler.core.ddl.TableSpec) → None¶
- Add an opaque (to the - Registry) table for use by a- Datastoreor other data repository client.- Opaque table records can be added via - insertOpaqueData, retrieved via- fetchOpaqueData, and removed via- deleteOpaqueData.- Parameters: - tableName : str
- Logical name of the opaque table. This may differ from the actual name used in the database by a prefix and/or suffix. 
- spec : ddl.TableSpec
- Specification for the table to be added. 
 
- tableName : 
 - 
registerRun(name: str) → None¶
- Add a new run if one with the given name does not exist. - Parameters: - name : str
- The name of the run to create. 
 - Notes - This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent. 
- name : 
 - 
removeCollection(name: str) → None¶
- Completely remove the given collection. - Parameters: - name : str
- The name of the collection to remove. 
 - Raises: - MissingCollectionError
- Raised if no collection with the given name exists. 
 - Notes - If this is a - RUNcollection, all datasets and quanta in it are also fully removed. This requires that those datasets be removed (or at least trashed) from any datastores that hold them first.- A collection may not be deleted as long as it is referenced by a - CHAINEDcollection; the- CHAINEDcollection must be deleted or redefined first.
- name : 
 - 
removeDatasets(refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶
- Remove datasets from the Registry. - The datasets will be removed unconditionally from all collections, and any - Quantumthat consumed this dataset will instead be marked with having a NULL input.- Datastorerecords will not be deleted; the caller is responsible for ensuring that the dataset has already been removed from all Datastores.- Parameters: - refs : IterableofDatasetRef
- References to the datasets to be removed. Must include a valid - idattribute, and should be considered invalidated upon return.
 - Raises: 
- refs : 
 - 
setCollectionChain(parent: str, children: Any) → None¶
- Define or redefine a - CHAINEDcollection.- Parameters: - parent : str
- Name of the chained collection. Must have already been added via a call to - Registry.registerCollection.
- children : Any
- An expression defining an ordered search of child collections, generally an iterable of - str. Restrictions on the dataset types to be searched can also be included, by passing mapping or an iterable containing tuples; see Collection expressions for more information.
 - Raises: 
- parent : 
 - 
syncDimensionData(element: Union[lsst.daf.butler.core.dimensions.elements.DimensionElement, str], row: Union[Mapping[str, Any], lsst.daf.butler.core.dimensions.records.DimensionRecord], conform: bool = True) → bool¶
- Synchronize the given dimension record with the database, inserting if it does not already exist and comparing values if it does. - Parameters: - element : DimensionElementorstr
- The - DimensionElementor name thereof that identifies the table records will be inserted into.
- row : dictorDimensionRecord
- The record to insert. 
- conform : bool, optional
- If - False(- Trueis default) perform no checking or conversions, and assume that- elementis a- DimensionElementinstance and- datais a one or more- DimensionRecordinstances of the appropriate subclass.
 - Returns: - Raises: - ConflictingDefinitionError
- Raised if the record exists in the database (according to primary key lookup) but is inconsistent with the given one. 
 - Notes - This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent. 
- element : 
 - 
transaction() → Iterator[None]¶
- Return a context manager that represents a transaction. 
 
- config :