LeastSquares¶
-
class
lsst.afw.math.LeastSquares¶ Bases:
pybind11_builtins.pybind11_objectAttributes Summary
DIRECT_SVDNORMAL_CHOLESKYNORMAL_EIGENSYSTEMMethods Summary
fromDesignMatrix(design, data, factorization)fromNormalEquations(fisher, rhs, factorization)getCovariance(self)getDiagnostic(self, arg0)getDimension(self)getFactorization(self)getFisherMatrix(self)getRank(self)getSolution(self)getThreshold(self)setDesignMatrix(self, arg0, arg1)setNormalEquations(self, arg0, arg1)setThreshold(self, arg0)Attributes Documentation
-
DIRECT_SVD= Factorization.DIRECT_SVD¶
-
NORMAL_CHOLESKY= Factorization.NORMAL_CHOLESKY¶
-
NORMAL_EIGENSYSTEM= Factorization.NORMAL_EIGENSYSTEM¶
Methods Documentation
-
static
fromDesignMatrix(design: numpy.ndarray, data: numpy.ndarray, factorization: lsst.afw.math.leastSquares.LeastSquares.Factorization = Factorization.NORMAL_EIGENSYSTEM) → lsst.afw.math.leastSquares.LeastSquares¶
-
static
fromNormalEquations(fisher: numpy.ndarray, rhs: numpy.ndarray, factorization: lsst.afw.math.leastSquares.LeastSquares.Factorization = Factorization.NORMAL_EIGENSYSTEM) → lsst.afw.math.leastSquares.LeastSquares¶
-
getCovariance(self: lsst.afw.math.leastSquares.LeastSquares) → numpy.ndarray¶
-
getDiagnostic(self: lsst.afw.math.leastSquares.LeastSquares, arg0: lsst.afw.math.leastSquares.LeastSquares.Factorization) → numpy.ndarray¶
-
getDimension(self: lsst.afw.math.leastSquares.LeastSquares) → int¶
-
getFactorization(self: lsst.afw.math.leastSquares.LeastSquares) → lsst.afw.math.leastSquares.LeastSquares.Factorization¶
-
getFisherMatrix(self: lsst.afw.math.leastSquares.LeastSquares) → numpy.ndarray¶
-
getRank(self: lsst.afw.math.leastSquares.LeastSquares) → int¶
-
getSolution(self: lsst.afw.math.leastSquares.LeastSquares) → numpy.ndarray¶
-
getThreshold(self: lsst.afw.math.leastSquares.LeastSquares) → float¶
-
setDesignMatrix(self: lsst.afw.math.leastSquares.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) → None¶
-
setNormalEquations(self: lsst.afw.math.leastSquares.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) → None¶
-
setThreshold(self: lsst.afw.math.leastSquares.LeastSquares, arg0: float) → None¶
-