ZogyImagePsfMatchTask¶
-
class
lsst.ip.diffim.ZogyImagePsfMatchTask(*args, **kwargs)¶ Bases:
lsst.ip.diffim.ImagePsfMatchTaskTask to perform Zogy PSF matching and image subtraction.
This class inherits from ImagePsfMatchTask to contain the _warper subtask and related methods.
Methods Summary
emptyMetadata()Empty (clear) the metadata for this Task and all sub-Tasks. getAllSchemaCatalogs()Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. getFullMetadata()Get metadata for all tasks. getFullName()Get the task name as a hierarchical name including parent task names. getFwhmPix(psf)Return the FWHM in pixels of a Psf. getName()Get the name of the task. getSchemaCatalogs()Get the schemas generated by this task. getSelectSources(exposure[, sigma, …])Get sources to use for Psf-matching. getTaskDict()Get a dictionary of all tasks as a shallow copy. makeCandidateList(templateExposure, …[, …])Make a list of acceptable KernelCandidates. makeField(doc)Make a lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the nameattribute of this task.matchExposures(templateExposure, scienceExposure)Warp and PSF-match an exposure to the reference. matchMaskedImages(templateMaskedImage, …)PSF-match a MaskedImage (templateMaskedImage) to a reference MaskedImage (scienceMaskedImage). run(scienceExposure, templateExposure[, …])Register, PSF-match, and subtract two Exposures, scienceExposure - templateExposureusing the ZOGY algorithm.subtractExposures(templateExposure, …[, …])Register, Psf-match and subtract two Exposures. subtractMaskedImages(templateExposure, …)Psf-match and subtract two MaskedImages. timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code. Methods Documentation
-
emptyMetadata()¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
getAllSchemaCatalogs()¶ Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
Returns: - schemacatalogs :
dict Keys are butler dataset type, values are a empty catalog (an instance of the appropriate
lsst.afw.tableCatalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
Notes
This method may be called on any task in the hierarchy; it will return the same answer, regardless.
The default implementation should always suffice. If your subtask uses schemas the override
Task.getSchemaCatalogs, not this method.- schemacatalogs :
-
getFullMetadata()¶ Get metadata for all tasks.
Returns: - metadata :
lsst.daf.base.PropertySet The
PropertySetkeys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName()¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getFwhmPix(psf)¶ Return the FWHM in pixels of a Psf.
-
getSchemaCatalogs()¶ Get the schemas generated by this task.
Returns: - schemaCatalogs :
dict Keys are butler dataset type, values are an empty catalog (an instance of the appropriate
lsst.afw.tableCatalog type) for this task.
See also
Task.getAllSchemaCatalogsNotes
Warning
Subclasses that use schemas must override this method. The default implementation returns an empty dict.
This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data.
Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well.
- schemaCatalogs :
-
getSelectSources(exposure, sigma=None, doSmooth=True, idFactory=None)¶ Get sources to use for Psf-matching.
This method runs detection and measurement on an exposure. The returned set of sources will be used as candidates for Psf-matching.
Parameters: Returns: - selectSources :
source catalog containing candidates for the Psf-matching
-
getTaskDict()¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
makeCandidateList(templateExposure, scienceExposure, kernelSize, candidateList=None)¶ Make a list of acceptable KernelCandidates.
Accept or generate a list of candidate sources for Psf-matching, and examine the Mask planes in both of the images for indications of bad pixels
Parameters: - templateExposure :
lsst.afw.image.Exposure Exposure that will be convolved
- scienceExposure :
lsst.afw.image.Exposure Exposure that will be matched-to
- kernelSize :
float Dimensions of the Psf-matching Kernel, used to grow detection footprints
- candidateList :
list, optional List of Sources to examine. Elements must be of type afw.table.Source or a type that wraps a Source and has a getSource() method, such as meas.algorithms.PsfCandidateF.
Returns: - templateExposure :
-
classmethod
makeField(doc)¶ Make a
lsst.pex.config.ConfigurableFieldfor this task.Parameters: - doc :
str Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask(name, **keyArgs)¶ Create a subtask as a new instance as the
nameattribute of this task.Parameters: - name :
str Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.- name :
-
matchExposures(templateExposure, scienceExposure, templateFwhmPix=None, scienceFwhmPix=None, candidateList=None, doWarping=True, convolveTemplate=True)¶ Warp and PSF-match an exposure to the reference.
Do the following, in order:
- Warp templateExposure to match scienceExposure,
- if doWarping True and their WCSs do not already match
- Determine a PSF matching kernel and differential background model
- that matches templateExposure to scienceExposure
- Convolve templateExposure by PSF matching kernel
Parameters: - templateExposure :
lsst.afw.image.Exposure Exposure to warp and PSF-match to the reference masked image
- scienceExposure :
lsst.afw.image.Exposure Exposure whose WCS and PSF are to be matched to
- templateFwhmPix :`float`
FWHM (in pixels) of the Psf in the template image (image to convolve)
- scienceFwhmPix :
float FWHM (in pixels) of the Psf in the science image
- candidateList :
list, optional a list of footprints/maskedImages for kernel candidates; if
Nonethen source detection is run.- Currently supported: list of Footprints or measAlg.PsfCandidateF
- doWarping :
bool what to do if
templateExposureandscienceExposureWCSs do not match:- convolveTemplate :
bool Whether to convolve the template image or the science image:
Returns: - results :
lsst.pipe.base.Struct An
lsst.pipe.base.Structcontaining these fields:matchedImage: the PSF-matched exposure =- Warped
templateExposureconvolved by psfMatchingKernel. This has:- the same parent bbox, Wcs and PhotoCalib as scienceExposure
- the same filter as templateExposure
- no Psf (because the PSF-matching process does not compute one)
psfMatchingKernel: the PSF matching kernelbackgroundModel: differential background modelkernelCellSet: SpatialCellSet used to solve for the PSF matching kernel
Raises: - RuntimeError
Raised if doWarping is False and
templateExposureandscienceExposureWCSs do not match
-
matchMaskedImages(templateMaskedImage, scienceMaskedImage, candidateList, templateFwhmPix=None, scienceFwhmPix=None)¶ PSF-match a MaskedImage (templateMaskedImage) to a reference MaskedImage (scienceMaskedImage).
Do the following, in order:
- Determine a PSF matching kernel and differential background model
- that matches templateMaskedImage to scienceMaskedImage
- Convolve templateMaskedImage by the PSF matching kernel
Parameters: - templateMaskedImage :
lsst.afw.image.MaskedImage masked image to PSF-match to the reference masked image; must be warped to match the reference masked image
- scienceMaskedImage :
lsst.afw.image.MaskedImage maskedImage whose PSF is to be matched to
- templateFwhmPix :
float FWHM (in pixels) of the Psf in the template image (image to convolve)
- scienceFwhmPix :
float FWHM (in pixels) of the Psf in the science image
- candidateList :
list, optional A list of footprints/maskedImages for kernel candidates; if
Nonethen source detection is run.- Currently supported: list of Footprints or measAlg.PsfCandidateF
Returns: - result :
callable - An `lsst.pipe.base.Struct` containing these fields:
- - psfMatchedMaskedImage: the PSF-matched masked image =
templateMaskedImageconvolved with psfMatchingKernel. This has the same xy0, dimensions and wcs asscienceMaskedImage.- - psfMatchingKernel: the PSF matching kernel
- - backgroundModel: differential background model
- - kernelCellSet: SpatialCellSet used to solve for the PSF matching kernel
Raises: - RuntimeError
Raised if input images have different dimensions
-
run(scienceExposure, templateExposure, doWarping=True, spatiallyVarying=False)¶ Register, PSF-match, and subtract two Exposures,
scienceExposure - templateExposureusing the ZOGY algorithm.Parameters: - templateExposure :
lsst.afw.image.Exposure exposure to be warped to scienceExposure.
- scienceExposure :
lsst.afw.image.Exposure reference Exposure.
- doWarping :
bool what to do if templateExposure’s and scienceExposure’s WCSs do not match: - if True then warp templateExposure to match scienceExposure - if False then raise an Exception
- spatiallyVarying :
bool If True, perform the operation over a grid of patches across the two exposures
Returns: - results :
lsst.pipe.base.Structcontaining these fields: - subtractedExposure:
lsst.afw.image.Exposure - The subtraction result.
- subtractedExposure:
- warpedExposure:
lsst.afw.image.ExposureorNone - templateExposure after warping to match scienceExposure
- warpedExposure:
Notes
- Do the following, in order:
- Warp templateExposure to match scienceExposure, if their WCSs do not already match
- Compute subtracted exposure ZOGY image subtraction algorithm on the two exposures
This is the new entry point of the task as of DM-25115.
- templateExposure :
-
subtractExposures(templateExposure, scienceExposure, doWarping=True, spatiallyVarying=True, inImageSpace=False, doPreConvolve=False)¶ Register, Psf-match and subtract two Exposures.
Do the following, in order:
- Warp templateExposure to match scienceExposure, if their WCSs do not already match
- Determine a PSF matching kernel and differential background model
- that matches templateExposure to scienceExposure
- PSF-match templateExposure to scienceExposure
- Compute subtracted exposure (see return values for equation).
Parameters: - templateExposure :
lsst.afw.image.Exposure Exposure to PSF-match to scienceExposure
- scienceExposure :
lsst.afw.image.Exposure Reference Exposure
- templateFwhmPix :
float FWHM (in pixels) of the Psf in the template image (image to convolve)
- scienceFwhmPix :
float FWHM (in pixels) of the Psf in the science image
- candidateList :
list, optional A list of footprints/maskedImages for kernel candidates; if
Nonethen source detection is run.- Currently supported: list of Footprints or measAlg.PsfCandidateF
- doWarping :
bool What to do if
templateExposure`andscienceExposureWCSs do not match:- convolveTemplate :
bool Convolve the template image or the science image
Returns: - result :
lsst.pipe.base.Struct An
lsst.pipe.base.Structcontaining these fields:subtractedExposure: subtracted ExposurescienceExposure - (matchedImage + backgroundModel)
matchedImage:templateExposureafter warping to matchtemplateExposure(if doWarping true), and convolving with psfMatchingKernel
psfMatchingKernel: PSF matching kernelbackgroundModel: differential background modelkernelCellSet: SpatialCellSet used to determine PSF matching kernel
-
subtractMaskedImages(templateExposure, scienceExposure, doWarping=True, spatiallyVarying=True, inImageSpace=False, doPreConvolve=False)¶ Psf-match and subtract two MaskedImages.
Do the following, in order:
- PSF-match templateMaskedImage to scienceMaskedImage
- Determine the differential background
- Return the difference: scienceMaskedImage
- ((warped templateMaskedImage convolved with psfMatchingKernel) + backgroundModel)
Parameters: - templateMaskedImage :
lsst.afw.image.MaskedImage MaskedImage to PSF-match to
scienceMaskedImage- scienceMaskedImage :
lsst.afw.image.MaskedImage Reference MaskedImage
- templateFwhmPix :
float FWHM (in pixels) of the Psf in the template image (image to convolve)
- scienceFwhmPix :
float FWHM (in pixels) of the Psf in the science image
- candidateList :
list, optional A list of footprints/maskedImages for kernel candidates; if
Nonethen source detection is run.- Currently supported: list of Footprints or measAlg.PsfCandidateF
Returns: - results :
lsst.pipe.base.Struct An
lsst.pipe.base.Structcontaining these fields:subtractedMaskedImage:scienceMaskedImage- (matchedImage + backgroundModel)matchedImage: templateMaskedImage convolved with psfMatchingKernelpsfMatchingKernel`: PSF matching kernelbackgroundModel: differential background modelkernelCellSet: SpatialCellSet used to determine PSF matching kernel
-
timer(name, logLevel=10000)¶ Context manager to log performance data for an arbitrary block of code.
Parameters: - name :
str Name of code being timed; data will be logged using item name:
StartandEnd.- logLevel
A
lsst.loglevel constant.
See also
timer.logInfoExamples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
- name :
-