AssembleCoaddConnections¶
-
class
lsst.pipe.tasks.assembleCoadd.AssembleCoaddConnections(*, config=None)¶ Bases:
lsst.pipe.base.PipelineTaskConnectionsAttributes Summary
allConnectionsbrightObjectMaskClass used for declaring PipelineTask prerequisite connections coaddExposuredefaultTemplatesdimensionsinitInputsinitOutputsinputWarpsinputsnImageoutputsprerequisiteInputsskyMapMethods Summary
adjustQuantum(datasetRefMap, …)Override to make adjustments to lsst.daf.butler.DatasetRefobjects in thelsst.daf.butler.core.Quantumduring the graph generation stage of the activator.buildDatasetRefs(quantum)Builds QuantizedConnections corresponding to input Quantum Attributes Documentation
-
allConnections= {'brightObjectMask': PrerequisiteInput(name='brightObjectMask', storageClass='ObjectMaskCatalog', doc='Input Bright Object Mask mask produced with external catalogs to be applied to the mask plane BRIGHT_OBJECT.', multiple=False, dimensions=('tract', 'patch', 'skymap', 'band'), isCalibration=False, deferLoad=False, lookupFunction=None), 'coaddExposure': Output(name='{fakesType}{outputCoaddName}Coadd{warpTypeSuffix}', storageClass='ExposureF', doc='Output coadded exposure, produced by stacking input warps', multiple=False, dimensions=('tract', 'patch', 'skymap', 'band'), isCalibration=False), 'inputWarps': Input(name='{inputCoaddName}Coadd_{warpType}Warp', storageClass='ExposureF', doc='Input list of warps to be assemebled i.e. stacked.WarpType (e.g. direct, psfMatched) is controlled by the warpType config parameter', multiple=True, dimensions=('tract', 'patch', 'skymap', 'visit', 'instrument'), isCalibration=False, deferLoad=True), 'nImage': Output(name='{outputCoaddName}Coadd_nImage', storageClass='ImageU', doc='Output image of number of input images per pixel', multiple=False, dimensions=('tract', 'patch', 'skymap', 'band'), isCalibration=False), 'skyMap': Input(name='skyMap', storageClass='SkyMap', doc='Input definition of geometry/bbox and projection/wcs for coadded exposures', multiple=False, dimensions=('skymap',), isCalibration=False, deferLoad=False)}¶
-
brightObjectMask¶ Class used for declaring PipelineTask prerequisite connections
Parameters: - name :
str The default name used to identify the dataset type
- storageClass :
str The storage class used when (un)/persisting the dataset type
- multiple :
bool Indicates if this connection should expect to contain multiple objects of the given dataset type
- dimensions : iterable of
str The
lsst.daf.butler.Butlerlsst.daf.butler.Registrydimensions used to identify the dataset type identified by the specified name- deferLoad :
bool Indicates that this dataset type will be loaded as a
lsst.daf.butler.DeferredDatasetHandle. PipelineTasks can use this object to load the object at a later time.- lookupFunction: `typing.Callable`, optional
An optional callable function that will look up PrerequisiteInputs using the DatasetType, registry, quantum dataId, and input collections passed to it. If no function is specified, the default temporal spatial lookup will be used.
- name :
-
coaddExposure¶
-
defaultTemplates= {'fakesType': '', 'inputCoaddName': 'deep', 'outputCoaddName': 'deep', 'warpType': 'direct', 'warpTypeSuffix': ''}¶
-
dimensions= {'tract', 'band', 'patch', 'skymap'}¶
-
initInputs= frozenset()¶
-
initOutputs= frozenset()¶
-
inputWarps¶
-
inputs= frozenset({'skyMap', 'inputWarps'})¶
-
nImage¶
-
outputs= frozenset({'nImage', 'coaddExposure'})¶
-
prerequisiteInputs= frozenset({'brightObjectMask'})¶
-
skyMap¶
Methods Documentation
-
adjustQuantum(datasetRefMap: lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]) → lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]¶ Override to make adjustments to
lsst.daf.butler.DatasetRefobjects in thelsst.daf.butler.core.Quantumduring the graph generation stage of the activator.The base class implementation simply checks that input connections with
multipleset toFalsehave no more than one dataset.Parameters: - datasetRefMap :
NamedKeyDict Mapping from dataset type to a
setoflsst.daf.butler.DatasetRefobjects
Returns: - datasetRefMap :
NamedKeyDict Modified mapping of input with possibly adjusted
lsst.daf.butler.DatasetRefobjects.
Raises: - ScalarError
Raised if any
InputorPrerequisiteInputconnection hasmultipleset toFalse, but multiple datasets.- Exception
Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found.
- datasetRefMap :
-
buildDatasetRefs(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
Parameters: - quantum :
lsst.daf.butler.Quantum Quantum object which defines the inputs and outputs for a given unit of processing
Returns: - retVal :
tupleof (InputQuantizedConnection, OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- quantum :
-