ApdbMetricConnections¶
-
class
lsst.verify.tasks.ApdbMetricConnections(*, config: PipelineTaskConfig = None)¶ Bases:
lsst.verify.tasks.MetricConnectionsAn abstract connections class defining a database input.
Notes
ApdbMetricConnectionsdefines the following dataset templates:package- Name of the metric’s namespace. By verify_metrics convention, this is the name of the package the metric is most closely associated with.
metric- Name of the metric, excluding any namespace.
Attributes Summary
allConnectionsdbInfodefaultTemplatesdimensionsinitInputsinitOutputsinputsmeasurementoutputsprerequisiteInputsMethods Summary
adjustQuantum(datasetRefMap, …)Override to make adjustments to lsst.daf.butler.DatasetRefobjects in thelsst.daf.butler.core.Quantumduring the graph generation stage of the activator.buildDatasetRefs(quantum)Builds QuantizedConnections corresponding to input Quantum Attributes Documentation
-
allConnections= {'dbInfo': Input(name='apdb_marker', storageClass='Config', doc='The dataset from which an APDB instance can be constructed by `dbLoader`. By default this is assumed to be a marker produced by AP processing.', multiple=True, dimensions={'detector', 'visit', 'instrument'}, isCalibration=False, deferLoad=False), 'measurement': Output(name='metricvalue_{package}_{metric}', storageClass='MetricValue', doc='The metric value computed by this task.', multiple=False, dimensions={'instrument'}, isCalibration=False)}¶
-
dbInfo¶
-
defaultTemplates= {'metric': None, 'package': None}¶
-
dimensions= {'instrument'}¶
-
initInputs= frozenset()¶
-
initOutputs= frozenset()¶
-
inputs= frozenset({'dbInfo'})¶
-
measurement¶
-
outputs= frozenset({'measurement'})¶
-
prerequisiteInputs= frozenset()¶
Methods Documentation
-
adjustQuantum(datasetRefMap: lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]) → lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]¶ Override to make adjustments to
lsst.daf.butler.DatasetRefobjects in thelsst.daf.butler.core.Quantumduring the graph generation stage of the activator.The base class implementation simply checks that input connections with
multipleset toFalsehave no more than one dataset.Parameters: - datasetRefMap :
NamedKeyDict Mapping from dataset type to a
setoflsst.daf.butler.DatasetRefobjects
Returns: - datasetRefMap :
NamedKeyDict Modified mapping of input with possibly adjusted
lsst.daf.butler.DatasetRefobjects.
Raises: - ScalarError
Raised if any
InputorPrerequisiteInputconnection hasmultipleset toFalse, but multiple datasets.- Exception
Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found.
- datasetRefMap :
-
buildDatasetRefs(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
Parameters: - quantum :
lsst.daf.butler.Quantum Quantum object which defines the inputs and outputs for a given unit of processing
Returns: - retVal :
tupleof (InputQuantizedConnection, OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- quantum :