MetricTask¶
-
class
lsst.verify.tasks.MetricTask(**kwargs)¶ Bases:
lsst.pipe.base.PipelineTaskA base class for tasks that compute one metric from input datasets.
Parameters: - *args
- **kwargs
Constructor parameters are the same as for
lsst.pipe.base.PipelineTask.
Notes
In general, both the
MetricTask’s metric and its input data are configurable. Metrics may be associated with a data ID at any level of granularity, including repository-wide.Like
lsst.pipe.base.PipelineTask, this class should be customized by overridingrunand by providing alsst.pipe.base.connectionTypes.Inputfor each parameter ofrun. For requirements that are specific toMetricTask, seerun.Attributes Summary
canMultiprocessMethods Summary
adaptArgsAndRun(inputData, inputDataIds, …)A wrapper around runused byMetricsControllerTask.addStandardMetadata(measurement, outputDataId)Add data ID-specific metadata required for all metrics. areInputDatasetsScalar(config)Return input dataset multiplicity. emptyMetadata()Empty (clear) the metadata for this Task and all sub-Tasks. getAllSchemaCatalogs()Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. getFullMetadata()Get metadata for all tasks. getFullName()Get the task name as a hierarchical name including parent task names. getInputDatasetTypes(config)Return input dataset types for this task. getName()Get the name of the task. getResourceConfig()Return resource configuration for this task. getSchemaCatalogs()Get the schemas generated by this task. getTaskDict()Get a dictionary of all tasks as a shallow copy. makeField(doc)Make a lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the nameattribute of this task.run(**kwargs)Run the MetricTask on in-memory data. runQuantum(butlerQC, inputRefs, outputRefs)Do Butler I/O to provide in-memory objects for run. timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code. Attributes Documentation
-
canMultiprocess= True¶
Methods Documentation
-
adaptArgsAndRun(inputData, inputDataIds, outputDataId)¶ A wrapper around
runused byMetricsControllerTask.Task developers should not need to call or override this method.
Parameters: - inputData :
dictfromstrto any Dictionary whose keys are the names of input parameters and values are Python-domain data objects (or lists of objects) retrieved from data butler. Input objects may be
Noneto represent missing data.- inputDataIds :
dictfromstrtolistof dataId Dictionary whose keys are the names of input parameters and values are data IDs (or lists of data IDs) that the task consumes for corresponding dataset type. Data IDs are guaranteed to match data objects in
inputData.- outputDataId :
dictfromstrto dataId Dictionary containing a single key,
"measurement", which maps to a single data ID for the measurement. The data ID must have the same granularity as the metric.
Returns: - struct :
lsst.pipe.base.Struct A
Structcontaining at least the following component:measurement: the value of the metric, computed frominputData(lsst.verify.MeasurementorNone). The measurement is guaranteed to contain not only the value of the metric, but also any mandatory supplementary information.
Raises: - lsst.verify.tasks.MetricComputationError
Raised if an algorithmic or system error prevents calculation of the metric. Examples include corrupted input data or unavoidable exceptions raised by analysis code. The
MetricComputationErrorshould be chained to a more specific exception describing the root cause.Not having enough data for a metric to be applicable is not an error, and should not trigger this exception.
Notes
This implementation calls
runon the contents ofinputData, followed by callingaddStandardMetadataon the result before returning it.Examples
Consider a metric that characterizes PSF variations across the entire field of view, given processed images. Then, if
runhas the signaturerun(images):inputData = {'images': [image1, image2, ...]} inputDataIds = {'images': [{'visit': 42, 'ccd': 1}, {'visit': 42, 'ccd': 2}, ...]} outputDataId = {'measurement': {'visit': 42}} result = task.adaptArgsAndRun( inputData, inputDataIds, outputDataId)
- inputData :
-
addStandardMetadata(measurement, outputDataId)¶ Add data ID-specific metadata required for all metrics.
This method currently does not add any metadata, but may do so in the future.
Parameters: - measurement :
lsst.verify.Measurement The
Measurementthat the metadata are added to.- outputDataId :
dataId The data ID to which the measurement applies, at the appropriate level of granularity.
Notes
This method should not be overridden by subclasses.
This method is not responsible for shared metadata like the execution environment (which should be added by this
MetricTask’s caller), nor for metadata specific to a particular metric (which should be added when the metric is calculated).Warning
This method’s signature will change whenever additional data needs to be provided. This is a deliberate restriction to ensure that all subclasses pass in the new data as well.
- measurement :
-
classmethod
areInputDatasetsScalar(config)¶ Return input dataset multiplicity.
Parameters: - config :
cls.ConfigClass Configuration for this task.
Returns: Notes
The default implementation extracts a
PipelineTaskConnectionsobject fromconfig.- config :
-
emptyMetadata()¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
getAllSchemaCatalogs()¶ Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
Returns: - schemacatalogs :
dict Keys are butler dataset type, values are a empty catalog (an instance of the appropriate
lsst.afw.tableCatalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
Notes
This method may be called on any task in the hierarchy; it will return the same answer, regardless.
The default implementation should always suffice. If your subtask uses schemas the override
Task.getSchemaCatalogs, not this method.- schemacatalogs :
-
getFullMetadata()¶ Get metadata for all tasks.
Returns: - metadata :
lsst.daf.base.PropertySet The
PropertySetkeys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName()¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
classmethod
getInputDatasetTypes(config)¶ Return input dataset types for this task.
Parameters: - config :
cls.ConfigClass Configuration for this task.
Returns: Notes
The default implementation extracts a
PipelineTaskConnectionsobject fromconfig.- config :
-
getResourceConfig()¶ Return resource configuration for this task.
Returns: - Object of type `~config.ResourceConfig` or ``None`` if resource
- configuration is not defined for this task.
-
getSchemaCatalogs()¶ Get the schemas generated by this task.
Returns: - schemaCatalogs :
dict Keys are butler dataset type, values are an empty catalog (an instance of the appropriate
lsst.afw.tableCatalog type) for this task.
See also
Task.getAllSchemaCatalogsNotes
Warning
Subclasses that use schemas must override this method. The default implementation returns an empty dict.
This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data.
Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well.
- schemaCatalogs :
-
getTaskDict()¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
classmethod
makeField(doc)¶ Make a
lsst.pex.config.ConfigurableFieldfor this task.Parameters: - doc :
str Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask(name, **keyArgs)¶ Create a subtask as a new instance as the
nameattribute of this task.Parameters: - name :
str Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.- name :
-
run(**kwargs)¶ Run the MetricTask on in-memory data.
Parameters: - **kwargs
Keyword arguments matching the inputs given in the class config; see
lsst.pipe.base.PipelineTask.runfor more details.
Returns: - struct :
lsst.pipe.base.Struct A
Structcontaining at least the following component:measurement: the value of the metric (lsst.verify.MeasurementorNone). This method is not responsible for adding mandatory metadata (e.g., the data ID); this is handled by the caller.
Raises: - lsst.verify.tasks.MetricComputationError
Raised if an algorithmic or system error prevents calculation of the metric. Examples include corrupted input data or unavoidable exceptions raised by analysis code. The
MetricComputationErrorshould be chained to a more specific exception describing the root cause.Not having enough data for a metric to be applicable is not an error, and should not trigger this exception.
Notes
All input data must be treated as optional. This maximizes the
MetricTask’s usefulness for incomplete pipeline runs or runs with optional processing steps. If a metric cannot be calculated because the necessary inputs are missing, theMetricTaskmust returnNonein place of the measurement.
-
runQuantum(butlerQC, inputRefs, outputRefs)¶ Do Butler I/O to provide in-memory objects for run.
This specialization of runQuantum performs error-handling specific to MetricTasks. Most or all of this functionality may be moved to activators in the future.
-
timer(name, logLevel=10000)¶ Context manager to log performance data for an arbitrary block of code.
Parameters: - name :
str Name of code being timed; data will be logged using item name:
StartandEnd.- logLevel
A
lsst.loglevel constant.
See also
timer.logInfoExamples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
- name :