PipelineTaskConnections¶
-
class
lsst.pipe.base.
PipelineTaskConnections
(*, config: PipelineTaskConfig = None)¶ Bases:
object
PipelineTaskConnections is a class used to declare desired IO when a PipelineTask is run by an activator
Parameters: - config :
PipelineTaskConfig
A
PipelineTaskConfig
class instance whose class has been configured to use thisPipelineTaskConnectionsClass
See also
Notes
PipelineTaskConnection
classes are created by declaring class attributes of types defined inlsst.pipe.base.connectionTypes
and are listed as follows:InitInput
- Defines connections in a quantum graph which are used as inputs to the__init__
function of thePipelineTask
corresponding to this classInitOuput
- Defines connections in a quantum graph which are to be persisted using a butler at the end of the__init__
function of thePipelineTask
corresponding to this class. The variable name used to define this connection should be the same as an attribute name on thePipelineTask
instance. E.g. if anInitOutput
is declared with the nameoutputSchema
in aPipelineTaskConnections
class, then aPipelineTask
instance should have an attributeself.outputSchema
defined. Its value is what will be saved by the activator framework.PrerequisiteInput
- An input connection type that defines alsst.daf.butler.DatasetType
that must be present at execution time, but that will not be used during the course of creating the quantum graph to be executed. These most often are things produced outside the processing pipeline, such as reference catalogs.Input
- Inputlsst.daf.butler.DatasetType
objects that will be used in therun
method of aPipelineTask
. The name used to declare class attribute must match a function argument name in therun
method of aPipelineTask
. E.g. If thePipelineTaskConnections
defines anInput
with the namecalexp
, then the corresponding signature should bePipelineTask.run(calexp, ...)
Output
- Alsst.daf.butler.DatasetType
that will be produced by an execution of aPipelineTask
. The name used to declare the connection must correspond to an attribute of aStruct
that is returned by aPipelineTask
run
method. E.g. if an output connection is defined with the namemeasCat
, then the correspondingPipelineTask.run
method must returnStruct(measCat=X,..)
where X matches thestorageClass
type defined on the output connection.
The process of declaring a
PipelineTaskConnection
class involves parameters passed in the declaration statement.The first parameter is
dimensions
which is an iterable of strings which defines the unit of processing the run method of a correspondingPipelineTask
will operate on. These dimensions must match dimensions that exist in the butler registry which will be used in executing the correspondingPipelineTask
.The second parameter is labeled
defaultTemplates
and is conditionally optional. The name attributes of connections can be specified as python format strings, with named format arguments. If any of the name parameters on connections defined in aPipelineTaskConnections
class contain a template, then a default template value must be specified in thedefaultTemplates
argument. This is done by passing a dictionary with keys corresponding to a template identifier, and values corresponding to the value to use as a default when formatting the string. For example ifConnectionClass.calexp.name = '{input}Coadd_calexp'
thendefaultTemplates
= {‘input’: ‘deep’}.Once a
PipelineTaskConnections
class is created, it is used in the creation of aPipelineTaskConfig
. This is further documented in the documentation ofPipelineTaskConfig
. For the purposes of this documentation, the relevant information is that the config class allows configuration of connection names by users when running a pipeline.Instances of a
PipelineTaskConnections
class are used by the pipeline task execution framework to introspect what a correspondingPipelineTask
will require, and what it will produce.Examples
>>> from lsst.pipe.base import connectionTypes as cT >>> from lsst.pipe.base import PipelineTaskConnections >>> from lsst.pipe.base import PipelineTaskConfig >>> class ExampleConnections(PipelineTaskConnections, ... dimensions=("A", "B"), ... defaultTemplates={"foo": "Example"}): ... inputConnection = cT.Input(doc="Example input", ... dimensions=("A", "B"), ... storageClass=Exposure, ... name="{foo}Dataset") ... outputConnection = cT.Output(doc="Example output", ... dimensions=("A", "B"), ... storageClass=Exposure, ... name="{foo}output") >>> class ExampleConfig(PipelineTaskConfig, ... pipelineConnections=ExampleConnections): ... pass >>> config = ExampleConfig() >>> config.connections.foo = Modified >>> config.connections.outputConnection = "TotallyDifferent" >>> connections = ExampleConnections(config=config) >>> assert(connections.inputConnection.name == "ModifiedDataset") >>> assert(connections.outputConnection.name == "TotallyDifferent")
Attributes Summary
allConnections
initInputs
initOutputs
inputs
outputs
prerequisiteInputs
Methods Summary
adjustQuantum
(datasetRefMap, …)Override to make adjustments to lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.buildDatasetRefs
(quantum)Builds QuantizedConnections corresponding to input Quantum Attributes Documentation
-
allConnections
= {}¶
-
initInputs
= frozenset()¶
-
initOutputs
= frozenset()¶
-
inputs
= frozenset()¶
-
outputs
= frozenset()¶
-
prerequisiteInputs
= frozenset()¶
Methods Documentation
-
adjustQuantum
(datasetRefMap: lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]) → lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]¶ Override to make adjustments to
lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.The base class implementation simply checks that input connections with
multiple
set toFalse
have no more than one dataset.Parameters: - datasetRefMap :
NamedKeyDict
Mapping from dataset type to a
set
oflsst.daf.butler.DatasetRef
objects
Returns: - datasetRefMap :
NamedKeyDict
Modified mapping of input with possibly adjusted
lsst.daf.butler.DatasetRef
objects.
Raises: - ScalarError
Raised if any
Input
orPrerequisiteInput
connection hasmultiple
set toFalse
, but multiple datasets.- Exception
Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found.
- datasetRefMap :
-
buildDatasetRefs
(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
Parameters: - quantum :
lsst.daf.butler.Quantum
Quantum object which defines the inputs and outputs for a given unit of processing
Returns: - retVal :
tuple
of (InputQuantizedConnection
, OutputQuantizedConnection
) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- quantum :
- config :