Datastore¶
-
class
lsst.daf.butler.Datastore(config: Union[Config, str], bridgeManager: DatastoreRegistryBridgeManager, butlerRoot: Optional[ResourcePathExpression] = None)¶ Bases:
objectDatastore interface.
Parameters: - config :
DatastoreConfigorstr Load configuration either from an existing config instance or by referring to a configuration file.
- bridgeManager :
DatastoreRegistryBridgeManager Object that manages the interface between
Registryand datastores.- butlerRoot :
str, optional New datastore root to use to override the configuration value.
Attributes Summary
containerKeyName of the key containing a list of subconfigurations that also need to be merged with defaults and will likely use different Python datastore classes (but all using DatastoreConfig). defaultConfigFilePath to configuration defaults. isEphemeralIndicate whether this Datastore is ephemeral or not. namesNames associated with this datastore returned as a list. Methods Summary
emptyTrash(ignore_errors)Remove all datasets from the trash. exists(datasetRef)Check if the dataset exists in the datastore. export(refs, *, directory, transfer)Export datasets for transfer to another data repository. forget(refs)Indicate to the Datastore that it should remove all records of the given datasets, without actually deleting them. fromConfig(config, bridgeManager, butlerRoot)Create datastore from type specified in config file. get(datasetRef, parameters, Any] = None)Load an InMemoryDatasetfrom the store.getLookupKeys()Return all the lookup keys relevant to this datastore. getURI(datasetRef, predict)URI to the Dataset. getURIs(datasetRef, predict)Return URIs associated with dataset. ingest(*datasets, transfer, …)Ingest one or more files into the datastore. knows(ref)Check if the dataset is known to the datastore. mexists(refs, artifact_existence, bool]] = None)Check the existence of multiple datasets at once. needs_expanded_data_ids(transfer, entity, …)Test whether this datastore needs expanded data IDs to ingest. put(inMemoryDataset, datasetRef)Write a InMemoryDatasetwith a givenDatasetRefto the store.remove(datasetRef)Indicate to the Datastore that a Dataset can be removed. retrieveArtifacts(refs, destination, …)Retrieve the artifacts associated with the supplied refs. setConfigRoot(root, config, full, overwrite)Set filesystem-dependent config options for this datastore. transaction()Context manager supporting Datastoretransactions.transfer(inputDatastore, datasetRef)Transfer a dataset from another datastore to this datastore. transfer_from(source_datastore, refs, …)Transfer dataset artifacts from another datastore to this one. trash(ref, Iterable[DatasetRef]], ignore_errors)Indicate to the Datastore that a Dataset can be moved to the trash. validateConfiguration(entities, DatasetType, …)Validate some of the configuration for this datastore. validateKey(lookupKey, entity, DatasetType, …)Validate a specific look up key with supplied entity. Attributes Documentation
-
containerKey= None¶ Name of the key containing a list of subconfigurations that also need to be merged with defaults and will likely use different Python datastore classes (but all using DatastoreConfig). Assumed to be a list of configurations that can be represented in a DatastoreConfig and containing a “cls” definition. None indicates that no containers are expected in this Datastore.
-
defaultConfigFile= None¶ Path to configuration defaults. Accessed within the
configresource or relative to a search path. Can be None if no defaults specified.
-
isEphemeral= False¶ Indicate whether this Datastore is ephemeral or not. An ephemeral datastore is one where the contents of the datastore will not exist across process restarts. This value can change per-instance.
-
names¶ Names associated with this datastore returned as a list.
Can be different to
namefor a chaining datastore.
Methods Documentation
-
emptyTrash(ignore_errors: bool = True) → None¶ Remove all datasets from the trash.
Parameters: - ignore_errors :
bool, optional Determine whether errors should be ignored.
Notes
Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces.
- ignore_errors :
-
exists(datasetRef: DatasetRef) → bool¶ Check if the dataset exists in the datastore.
Parameters: - datasetRef :
DatasetRef Reference to the required dataset.
Returns: - datasetRef :
-
export(refs: Iterable[DatasetRef], *, directory: Optional[str] = None, transfer: Optional[str] = None) → Iterable[FileDataset]¶ Export datasets for transfer to another data repository.
Parameters: - refs : iterable of
DatasetRef Dataset references to be exported.
- directory :
str, optional Path to a directory that should contain files corresponding to output datasets. Ignored if
transferisNone.- transfer :
str, optional Mode that should be used to move datasets out of the repository. Valid options are the same as those of the
transferargument toingest, and datastores may similarly signal that a transfer mode is not supported by raisingNotImplementedError.
Returns: - dataset : iterable of
DatasetTransfer Structs containing information about the exported datasets, in the same order as
refs.
Raises: - NotImplementedError
Raised if the given transfer mode is not supported.
- refs : iterable of
-
forget(refs: Iterable[DatasetRef]) → None¶ Indicate to the Datastore that it should remove all records of the given datasets, without actually deleting them.
Parameters: - refs :
Iterable[DatasetRef] References to the datasets being forgotten.
Notes
Asking a datastore to forget a
DatasetRefit does not hold should be a silent no-op, not an error.- refs :
-
static
fromConfig(config: Config, bridgeManager: DatastoreRegistryBridgeManager, butlerRoot: Optional[ResourcePathExpression] = None) → 'Datastore'¶ Create datastore from type specified in config file.
Parameters:
-
get(datasetRef: DatasetRef, parameters: Mapping[str, Any] = None) → Any¶ Load an
InMemoryDatasetfrom the store.Parameters: - datasetRef :
DatasetRef Reference to the required Dataset.
- parameters :
dict StorageClass-specific parameters that specify a slice of the Dataset to be loaded.
Returns: - inMemoryDataset :
object Requested Dataset or slice thereof as an InMemoryDataset.
- datasetRef :
-
getLookupKeys() → Set[LookupKey]¶ Return all the lookup keys relevant to this datastore.
Returns: - keys :
setofLookupKey The keys stored internally for looking up information based on
DatasetTypename orStorageClass.
- keys :
-
getURI(datasetRef: DatasetRef, predict: bool = False) → ResourcePath¶ URI to the Dataset.
Parameters: - datasetRef :
DatasetRef Reference to the required Dataset.
- predict :
bool If
Trueattempt to predict the URI for a dataset if it does not exist in datastore.
Returns: - uri :
str URI string pointing to the Dataset within the datastore. If the Dataset does not exist in the datastore, the URI may be a guess. If the datastore does not have entities that relate well to the concept of a URI the returned URI string will be descriptive. The returned URI is not guaranteed to be obtainable.
Raises: - FileNotFoundError
A URI has been requested for a dataset that does not exist and guessing is not allowed.
- datasetRef :
-
getURIs(datasetRef: DatasetRef, predict: bool = False) → Tuple[Optional[ResourcePath], Dict[str, ResourcePath]]¶ Return URIs associated with dataset.
Parameters: - ref :
DatasetRef Reference to the required dataset.
- predict :
bool, optional If the datastore does not know about the dataset, should it return a predicted URI or not?
Returns: - primary :
lsst.resources.ResourcePath The URI to the primary artifact associated with this dataset. If the dataset was disassembled within the datastore this may be
None.- components :
dict URIs to any components associated with the dataset artifact. Can be empty if there are no components.
- ref :
-
ingest(*datasets, transfer: Optional[str] = None, record_validation_info: bool = True) → None¶ Ingest one or more files into the datastore.
Parameters: - datasets :
FileDataset Each positional argument is a struct containing information about a file to be ingested, including its path (either absolute or relative to the datastore root, if applicable), a complete
DatasetRef(withdataset_id not None), and optionally a formatter class or its fully-qualified string name. If a formatter is not provided, the one the datastore would use forputon that dataset is assumed.- transfer :
str, optional How (and whether) the dataset should be added to the datastore. If
None(default), the file must already be in a location appropriate for the datastore (e.g. within its root directory), and will not be modified. Other choices include “move”, “copy”, “link”, “symlink”, “relsymlink”, and “hardlink”. “link” is a special transfer mode that will first try to make a hardlink and if that fails a symlink will be used instead. “relsymlink” creates a relative symlink rather than use an absolute path. Most datastores do not support all transfer modes. “auto” is a special option that will let the data store choose the most natural option for itself.- record_validation_info :
bool, optional If
True, the default, the datastore can record validation information associated with the file. IfFalsethe datastore will not attempt to track any information such as checksums or file sizes. This can be useful if such information is tracked in an external system or if the file is to be compressed in place. It is up to the datastore whether this parameter is relevant.
Raises: - NotImplementedError
Raised if the datastore does not support the given transfer mode (including the case where ingest is not supported at all).
- DatasetTypeNotSupportedError
Raised if one or more files to be ingested have a dataset type that is not supported by the datastore.
- FileNotFoundError
Raised if one of the given files does not exist.
- FileExistsError
Raised if transfer is not
Nonebut the (internal) location the file would be moved to is already occupied.
Notes
Subclasses should implement
_prepIngestand_finishIngestinstead of implementingingestdirectly. Datastores that hold and delegate to child datastores may want to call those methods as well.Subclasses are encouraged to document their supported transfer modes in their class documentation.
- datasets :
-
knows(ref: DatasetRef) → bool¶ Check if the dataset is known to the datastore.
Does not check for existence of any artifact.
Parameters: - ref :
DatasetRef Reference to the required dataset.
Returns: - ref :
-
mexists(refs: Iterable[DatasetRef], artifact_existence: Optional[Dict[ResourcePath, bool]] = None) → Dict[DatasetRef, bool]¶ Check the existence of multiple datasets at once.
Parameters: - refs : iterable of
DatasetRef The datasets to be checked.
- artifact_existence :
dict[lsst.resources.ResourcePath,bool] Optional mapping of datastore artifact to existence. Updated by this method with details of all artifacts tested. Can be
Noneif the caller is not interested.
Returns: - existence :
dictof [DatasetRef,bool] Mapping from dataset to boolean indicating existence.
- refs : iterable of
-
needs_expanded_data_ids(transfer: Optional[str], entity: Optional[Union[DatasetRef, DatasetType, StorageClass]] = None) → bool¶ Test whether this datastore needs expanded data IDs to ingest.
Parameters: Returns:
-
put(inMemoryDataset: Any, datasetRef: DatasetRef) → None¶ Write a
InMemoryDatasetwith a givenDatasetRefto the store.Parameters: - inMemoryDataset :
object The Dataset to store.
- datasetRef :
DatasetRef Reference to the associated Dataset.
- inMemoryDataset :
-
remove(datasetRef: DatasetRef) → None¶ Indicate to the Datastore that a Dataset can be removed.
Parameters: - datasetRef :
DatasetRef Reference to the required Dataset.
Raises: - FileNotFoundError
When Dataset does not exist.
Notes
Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces.
- datasetRef :
-
retrieveArtifacts(refs: Iterable[DatasetRef], destination: ResourcePath, transfer: str = 'auto', preserve_path: bool = True, overwrite: bool = False) → List[ResourcePath]¶ Retrieve the artifacts associated with the supplied refs.
Parameters: - refs : iterable of
DatasetRef The datasets for which artifacts are to be retrieved. A single ref can result in multiple artifacts. The refs must be resolved.
- destination :
lsst.resources.ResourcePath Location to write the artifacts.
- transfer :
str, optional Method to use to transfer the artifacts. Must be one of the options supported by
lsst.resources.ResourcePath.transfer_from(). “move” is not allowed.- preserve_path :
bool, optional If
Truethe full path of the artifact within the datastore is preserved. IfFalsethe final file component of the path is used.- overwrite :
bool, optional If
Trueallow transfers to overwrite existing files at the destination.
Returns: - targets :
listoflsst.resources.ResourcePath URIs of file artifacts in destination location. Order is not preserved.
Notes
For non-file datastores the artifacts written to the destination may not match the representation inside the datastore. For example a hierarchichal data structure in a NoSQL database may well be stored as a JSON file.
- refs : iterable of
-
classmethod
setConfigRoot(root: str, config: lsst.daf.butler.core.config.Config, full: lsst.daf.butler.core.config.Config, overwrite: bool = True) → None¶ Set filesystem-dependent config options for this datastore.
The options will be appropriate for a new empty repository with the given root.
Parameters: - root :
str Filesystem path to the root of the data repository.
- config :
Config A
Configto update. Only the subset understood by this component will be updated. Will not expand defaults.- full :
Config A complete config with all defaults expanded that can be converted to a
DatastoreConfig. Read-only and will not be modified by this method. Repository-specific options that should not be obtained from defaults when Butler instances are constructed should be copied fromfulltoconfig.- overwrite :
bool, optional If
False, do not modify a value inconfigif the value already exists. Default is always to overwrite with the providedroot.
Notes
If a keyword is explicitly defined in the supplied
configit will not be overridden by this method ifoverwriteisFalse. This allows explicit values set in external configs to be retained.- root :
-
transaction() → Iterator[lsst.daf.butler.core.datastore.DatastoreTransaction]¶ Context manager supporting
Datastoretransactions.Transactions can be nested, and are to be used in combination with
Registry.transaction.
-
transfer(inputDatastore: Datastore, datasetRef: DatasetRef) → None¶ Transfer a dataset from another datastore to this datastore.
Parameters: - inputDatastore :
Datastore The external
Datastorefrom which to retrieve the Dataset.- datasetRef :
DatasetRef Reference to the required Dataset.
- inputDatastore :
-
transfer_from(source_datastore: Datastore, refs: Iterable[DatasetRef], local_refs: Optional[Iterable[DatasetRef]] = None, transfer: str = 'auto', artifact_existence: Optional[Dict[ResourcePath, bool]] = None) → None¶ Transfer dataset artifacts from another datastore to this one.
Parameters: - source_datastore :
Datastore The datastore from which to transfer artifacts. That datastore must be compatible with this datastore receiving the artifacts.
- refs : iterable of
DatasetRef The datasets to transfer from the source datastore.
- local_refs : iterable of
DatasetRef, optional The dataset refs associated with the registry associated with this datastore. Can be
Noneif the source and target datastore are using UUIDs.- transfer :
str, optional How (and whether) the dataset should be added to the datastore. Choices include “move”, “copy”, “link”, “symlink”, “relsymlink”, and “hardlink”. “link” is a special transfer mode that will first try to make a hardlink and if that fails a symlink will be used instead. “relsymlink” creates a relative symlink rather than use an absolute path. Most datastores do not support all transfer modes. “auto” (the default) is a special option that will let the data store choose the most natural option for itself. If the source location and transfer location are identical the transfer mode will be ignored.
- artifact_existence :
dict[lsst.resources.ResourcePath,bool] Optional mapping of datastore artifact to existence. Updated by this method with details of all artifacts tested. Can be
Noneif the caller is not interested.
Raises: - TypeError
Raised if the two datastores are not compatible.
- source_datastore :
-
trash(ref: Union[DatasetRef, Iterable[DatasetRef]], ignore_errors: bool = True) → None¶ Indicate to the Datastore that a Dataset can be moved to the trash.
Parameters: - ref :
DatasetRefor iterable thereof Reference(s) to the required Dataset.
- ignore_errors :
bool, optional Determine whether errors should be ignored. When multiple refs are being trashed there will be no per-ref check.
Raises: - FileNotFoundError
When Dataset does not exist and errors are not ignored. Only checked if a single ref is supplied (and not in a list).
Notes
Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces.
- ref :
-
validateConfiguration(entities: Iterable[Union[DatasetRef, DatasetType, StorageClass]], logFailures: bool = False) → None¶ Validate some of the configuration for this datastore.
Parameters: - entities : iterable of
DatasetRef,DatasetType, orStorageClass Entities to test against this configuration. Can be differing types.
- logFailures :
bool, optional If
True, output a log message for every validation error detected.
Raises: - DatastoreValidationError
Raised if there is a validation problem with a configuration.
Notes
Which parts of the configuration are validated is at the discretion of each Datastore implementation.
- entities : iterable of
-
validateKey(lookupKey: LookupKey, entity: Union[DatasetRef, DatasetType, StorageClass]) → None¶ Validate a specific look up key with supplied entity.
Parameters: - lookupKey :
LookupKey Key to use to retrieve information from the datastore configuration.
- entity :
DatasetRef,DatasetType, orStorageClass Entity to compare with configuration retrieved using the specified lookup key.
Raises: - DatastoreValidationError
Raised if there is a problem with the combination of entity and lookup key.
Notes
Bypasses the normal selection priorities by allowing a key that would normally not be selected to be validated.
- lookupKey :
- config :