Registry¶
-
class
lsst.daf.butler.registry.Registry¶ Bases:
abc.ABCAbstract Registry interface.
Each registry implementation can have its own constructor parameters. The assumption is that an instance of a specific subclass will be constructed from configuration using
Registry.fromConfig(). The base class will look for aclsentry and call that specificfromConfig()method.All subclasses should store
RegistryDefaultsin a_defaultsproperty. No other properties are assumed shared between implementations.Attributes Summary
defaultConfigFilePath to configuration defaults. defaultsDefault collection search path and/or output RUNcollection (RegistryDefaults).dimensionsDefinitions of all dimensions recognized by this Registry(DimensionUniverse).Methods Summary
associate(collection, refs)Add existing datasets to a TAGGEDcollection.certify(collection, refs, timespan)Associate one or more datasets with a calibration collection and a validity range within it. copy(defaults)Create a new Registrybacked by the same data repository and connection as this one, but independent defaults.createFromConfig(config, str, None] = None, …)Create registry database and return Registryinstance.decertify(collection, datasetType, …)Remove or adjust datasets to clear a validity range within a calibration collection. determineTrampoline(config, RegistryConfig, …)Return class to use to instantiate real registry. disassociate(collection, refs)Remove existing datasets from a TAGGEDcollection.expandDataId(dataId, Mapping[str, Any], …)Expand a dimension-based data ID to include additional information. findDataset(datasetType, str], dataId, …)Find a dataset given its DatasetTypeand data ID.forceRegistryConfig(config, RegistryConfig, …)Force the supplied config to a RegistryConfig.fromConfig(config, RegistryConfig, Config, …)Create Registrysubclass instance fromconfig.getCollectionChain(parent)Return the child collections in a CHAINEDcollection.getCollectionDocumentation(collection)Retrieve the documentation string for a collection. getCollectionSummary(collection)Return a summary for the given collection. getCollectionType(name)Return an enumeration value indicating the type of the given collection. getDataset(id, uuid.UUID])Retrieve a Dataset entry. getDatasetLocations(ref)Retrieve datastore locations for a given dataset. getDatasetType(name)Get the DatasetType.getDatastoreBridgeManager()Return an object that allows a new Datastoreinstance to communicate with thisRegistry.insertDatasets(datasetType, str], dataIds, …)Insert one or more datasets into the RegistryinsertDimensionData(element, str], *data, …)Insert one or more dimension records into the database. isWriteable()Return Trueif this registry allows write operations, andFalseotherwise.queryCollections(expression, datasetType, …)Iterate over the collections whose names match an expression. queryDataIds(dimensions, str]], …)Query for data IDs matching user-provided criteria. queryDatasetAssociations(datasetType, …)Iterate over dataset-collection combinations where the dataset is in the collection. queryDatasetTypes(expression, *, components, …)Iterate over the dataset types whose names match an expression. queryDatasets(datasetType, *, collections, …)Query for and iterate over dataset references matching user-provided criteria. queryDimensionRecords(element, str], *, …)Query for dimension information matching user-provided criteria. refresh()Refresh all in-memory state by querying the database. registerCollection(name, type, doc)Add a new collection if one with the given name does not exist. registerDatasetType(datasetType)Add a new DatasetTypeto the Registry.registerRun(name, doc)Add a new run if one with the given name does not exist. removeCollection(name)Remove the given collection from the registry. removeDatasetType(name)Remove the named DatasetTypefrom the registry.removeDatasets(refs)Remove datasets from the Registry. resetConnectionPool()Reset connection pool for registry if relevant. setCollectionChain(parent, children, *, flatten)Define or redefine a CHAINEDcollection.setCollectionDocumentation(collection, doc)Set the documentation string for a collection. supportsIdGenerationMode(mode)Test whether the given dataset ID generation mode is supported by insertDatasets.syncDimensionData(element, str], row, Any], …)Synchronize the given dimension record with the database, inserting if it does not already exist and comparing values if it does. transaction(*, savepoint)Return a context manager that represents a transaction. Attributes Documentation
-
defaultConfigFile= None¶ Path to configuration defaults. Accessed within the
configsresource or relative to a search path. Can be None if no defaults specified.
-
defaults¶ Default collection search path and/or output
RUNcollection (RegistryDefaults).This is an immutable struct whose components may not be set individually, but the entire struct can be set by assigning to this property.
Methods Documentation
-
associate(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶ Add existing datasets to a
TAGGEDcollection.If a DatasetRef with the same exact ID is already in a collection nothing is changed. If a
DatasetRefwith the sameDatasetTypeand data ID but with different ID exists in the collection,ConflictingDefinitionErroris raised.Parameters: Raises: - ConflictingDefinitionError
If a Dataset with the given
DatasetRefalready exists in the given collection.- AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs).- MissingCollectionError
Raised if
collectiondoes not exist in the registry.- TypeError
Raise adding new datasets to the given
collectionis not allowed.
-
certify(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef], timespan: lsst.daf.butler.core.timespan.Timespan) → None¶ Associate one or more datasets with a calibration collection and a validity range within it.
Parameters: - collection :
str The name of an already-registered
CALIBRATIONcollection.- refs :
Iterable[DatasetRef] Datasets to be associated.
- timespan :
Timespan The validity range for these datasets within the collection.
Raises: - AmbiguousDatasetError
Raised if any of the given
DatasetRefinstances is unresolved.- ConflictingDefinitionError
Raised if the collection already contains a different dataset with the same
DatasetTypeand data ID and an overlapping validity range.- TypeError
Raised if
collectionis not aCALIBRATIONcollection or if one or more datasets are of a dataset type for whichDatasetType.isCalibrationreturnsFalse.
- collection :
-
copy(defaults: Optional[lsst.daf.butler.registry._defaults.RegistryDefaults] = None) → lsst.daf.butler.registry._registry.Registry¶ Create a new
Registrybacked by the same data repository and connection as this one, but independent defaults.Parameters: - defaults :
RegistryDefaults, optional Default collections and data ID values for the new registry. If not provided,
self.defaultswill be used (but future changes to either registry’s defaults will not affect the other).
Returns: Notes
Because the new registry shares a connection with the original, they also share transaction state (despite the fact that their
transactioncontext manager methods do not reflect this), and must be used with care.- defaults :
-
classmethod
createFromConfig(config: Union[lsst.daf.butler.registry._config.RegistryConfig, str, None] = None, dimensionConfig: Union[lsst.daf.butler.core.dimensions._config.DimensionConfig, str, None] = None, butlerRoot: Union[str, urllib.parse.ParseResult, ResourcePath, pathlib.Path, None] = None) → lsst.daf.butler.registry._registry.Registry¶ Create registry database and return
Registryinstance.This method initializes database contents, database must be empty prior to calling this method.
Parameters: - config :
RegistryConfigorstr, optional Registry configuration, if missing then default configuration will be loaded from registry.yaml.
- dimensionConfig :
DimensionConfigorstr, optional Dimensions configuration, if missing then default configuration will be loaded from dimensions.yaml.
- butlerRoot : convertible to
lsst.resources.ResourcePath, optional Path to the repository root this
Registrywill manage.
Returns: Notes
This class will determine the concrete
Registrysubclass to use from configuration. Each subclass should implement this method even if it can not create a registry.- config :
-
decertify(collection: str, datasetType: Union[str, lsst.daf.butler.core.datasets.type.DatasetType], timespan: lsst.daf.butler.core.timespan.Timespan, *, dataIds: Optional[Iterable[Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any]]]] = None) → None¶ Remove or adjust datasets to clear a validity range within a calibration collection.
Parameters: - collection :
str The name of an already-registered
CALIBRATIONcollection.- datasetType :
strorDatasetType Name or
DatasetTypeinstance for the datasets to be decertified.- timespan :
Timespan, optional The validity range to remove datasets from within the collection. Datasets that overlap this range but are not contained by it will have their validity ranges adjusted to not overlap it, which may split a single dataset validity range into two.
- dataIds :
Iterable[DataId], optional Data IDs that should be decertified within the given validity range If
None, all data IDs forself.datasetTypewill be decertified.
Raises: - TypeError
Raised if
collectionis not aCALIBRATIONcollection or ifdatasetType.isCalibration() is False.
- collection :
-
classmethod
determineTrampoline(config: Optional[Union[ButlerConfig, RegistryConfig, Config, str]]) → Tuple[Type[Registry], RegistryConfig]¶ Return class to use to instantiate real registry.
Parameters: - config :
RegistryConfigorstr, optional Registry configuration, if missing then default configuration will be loaded from registry.yaml.
Returns: - requested_cls :
typeofRegistry The real registry class to use.
- registry_config :
RegistryConfig The
RegistryConfigto use.
- config :
-
disassociate(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶ Remove existing datasets from a
TAGGEDcollection.collectionandrefcombinations that are not currently associated are silently ignored.Parameters: Raises: - AmbiguousDatasetError
Raised if any of the given dataset references is unresolved.
- MissingCollectionError
Raised if
collectiondoes not exist in the registry.- TypeError
Raise adding new datasets to the given
collectionis not allowed.
-
expandDataId(dataId: Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, graph: Optional[lsst.daf.butler.core.dimensions._graph.DimensionGraph] = None, records: Union[lsst.daf.butler.core.named.NamedKeyMapping[lsst.daf.butler.core.dimensions._elements.DimensionElement, typing.Union[lsst.daf.butler.core.dimensions._records.DimensionRecord, NoneType]][lsst.daf.butler.core.dimensions._elements.DimensionElement, Optional[lsst.daf.butler.core.dimensions._records.DimensionRecord]], Mapping[str, Optional[lsst.daf.butler.core.dimensions._records.DimensionRecord]], None] = None, withDefaults: bool = True, **kwargs) → lsst.daf.butler.core.dimensions._coordinate.DataCoordinate¶ Expand a dimension-based data ID to include additional information.
Parameters: - dataId :
DataCoordinateordict, optional Data ID to be expanded; augmented and overridden by
kwargs.- graph :
DimensionGraph, optional Set of dimensions for the expanded ID. If
None, the dimensions will be inferred from the keys ofdataIdandkwargs. Dimensions that are indataIdorkwargsbut not ingraphare silently ignored, providing a way to extract andgraphexpand a subset of a data ID.- records :
Mapping[str,DimensionRecord], optional Dimension record data to use before querying the database for that data, keyed by element name.
- withDefaults :
bool, optional Utilize
self.defaults.dataIdto fill in missing governor dimension key-value pairs. Defaults toTrue(i.e. defaults are used).- **kwargs
Additional keywords are treated like additional key-value pairs for
dataId, extending and overriding
Returns: - expanded :
DataCoordinate A data ID that includes full metadata for all of the dimensions it identifies, i.e. guarantees that
expanded.hasRecords()andexpanded.hasFull()both returnTrue.
- dataId :
-
findDataset(datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, collections: Optional[Any] = None, timespan: Optional[lsst.daf.butler.core.timespan.Timespan] = None, **kwargs) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Find a dataset given its
DatasetTypeand data ID.This can be used to obtain a
DatasetRefthat permits the dataset to be read from aDatastore. If the dataset is a component and can not be found using the provided dataset type, a dataset ref for the parent will be returned instead but with the correct dataset type.Parameters: - datasetType :
DatasetTypeorstr A
DatasetTypeor the name of one.- dataId :
dictorDataCoordinate, optional A
dict-like object containing theDimensionlinks that identify the dataset within a collection.- collections, optional.
An expression that fully or partially identifies the collections to search for the dataset; see Collection expressions for more information. Defaults to
self.defaults.collections.- timespan :
Timespan, optional A timespan that the validity range of the dataset must overlap. If not provided, any
CALIBRATIONcollections matched by thecollectionsargument will not be searched.- **kwargs
Additional keyword arguments passed to
DataCoordinate.standardizeto convertdataIdto a trueDataCoordinateor augment an existing one.
Returns: - ref :
DatasetRef A reference to the dataset, or
Noneif no matching Dataset was found.
Raises: Notes
This method simply returns
Noneand does not raise an exception even when the set of collections searched is intrinsically incompatible with the dataset type, e.g. ifdatasetType.isCalibration() is False, but onlyCALIBRATIONcollections are being searched. This may make it harder to debug some lookup failures, but the behavior is intentional; we consider it more important that failed searches are reported consistently, regardless of the reason, and that adding additional collections that do not contain a match to the search path never changes the behavior.- datasetType :
-
classmethod
forceRegistryConfig(config: Optional[Union[ButlerConfig, RegistryConfig, Config, str]]) → RegistryConfig¶ Force the supplied config to a
RegistryConfig.Parameters: - config :
RegistryConfig,ConfigorstrorNone Registry configuration, if missing then default configuration will be loaded from registry.yaml.
Returns: - registry_config :
RegistryConfig A registry config.
- config :
-
classmethod
fromConfig(config: Union[ButlerConfig, RegistryConfig, Config, str], butlerRoot: Optional[ResourcePathExpression] = None, writeable: bool = True, defaults: Optional[RegistryDefaults] = None) → Registry¶ Create
Registrysubclass instance fromconfig.Registry database must be initialized prior to calling this method.
Parameters: - config :
ButlerConfig,RegistryConfig,Configorstr Registry configuration
- butlerRoot :
lsst.resources.ResourcePathExpression, optional Path to the repository root this
Registrywill manage.- writeable :
bool, optional If
True(default) create a read-write connection to the database.- defaults :
RegistryDefaults, optional Default collection search path and/or output
RUNcollection.
Returns: Notes
This class will determine the concrete
Registrysubclass to use from configuration. Each subclass should implement this method.- config :
-
getCollectionChain(parent: str) → lsst.daf.butler.registry.wildcards.CollectionSearch¶ Return the child collections in a
CHAINEDcollection.Parameters: - parent :
str Name of the chained collection. Must have already been added via a call to
Registry.registerCollection.
Returns: - children :
CollectionSearch An object that defines the search path of the collection. See Collection expressions for more information.
Raises: - parent :
-
getCollectionDocumentation(collection: str) → Optional[str]¶ Retrieve the documentation string for a collection.
Parameters: - name :
str Name of the collection.
Returns: - name :
-
getCollectionSummary(collection: str) → lsst.daf.butler.registry.summaries.CollectionSummary¶ Return a summary for the given collection.
Parameters: - collection :
str Name of the collection for which a summary is to be retrieved.
Returns: - summary :
CollectionSummary Summary of the dataset types and governor dimension values in this collection.
- collection :
-
getCollectionType(name: str) → lsst.daf.butler.registry._collectionType.CollectionType¶ Return an enumeration value indicating the type of the given collection.
Parameters: - name :
str The name of the collection.
Returns: - type :
CollectionType Enum value indicating the type of this collection.
Raises: - MissingCollectionError
Raised if no collection with the given name exists.
- name :
-
getDataset(id: Union[int, uuid.UUID]) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Retrieve a Dataset entry.
Parameters: - id :
DatasetId The unique identifier for the dataset.
Returns: - id :
-
getDatasetLocations(ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → Iterable[str]¶ Retrieve datastore locations for a given dataset.
Parameters: - ref :
DatasetRef A reference to the dataset for which to retrieve storage information.
Returns: - datastores :
Iterable[str] All the matching datastores holding this dataset.
Raises: - AmbiguousDatasetError
Raised if
ref.idisNone.
- ref :
-
getDatasetType(name: str) → lsst.daf.butler.core.datasets.type.DatasetType¶ Get the
DatasetType.Parameters: - name :
str Name of the type.
Returns: - type :
DatasetType The
DatasetTypeassociated with the given name.
Raises: - KeyError
Requested named DatasetType could not be found in registry.
- name :
-
getDatastoreBridgeManager() → DatastoreRegistryBridgeManager¶ Return an object that allows a new
Datastoreinstance to communicate with thisRegistry.Returns: - manager :
DatastoreRegistryBridgeManager Object that mediates communication between this
Registryand its associated datastores.
- manager :
-
insertDatasets(datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str], dataIds: Iterable[Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any]]], run: Optional[str] = None, expand: bool = True, idGenerationMode: lsst.daf.butler.registry.interfaces._datasets.DatasetIdGenEnum = <DatasetIdGenEnum.UNIQUE: 0>) → List[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Insert one or more datasets into the
RegistryThis always adds new datasets; to associate existing datasets with a new collection, use
associate.Parameters: - datasetType :
DatasetTypeorstr A
DatasetTypeor the name of one.- dataIds :
IterableofdictorDataCoordinate Dimension-based identifiers for the new datasets.
- run :
str, optional The name of the run that produced the datasets. Defaults to
self.defaults.run.- expand :
bool, optional If
True(default), expand data IDs as they are inserted. This is necessary in general to allow datastore to generate file templates, but it may be disabled if the caller can guarantee this is unnecessary.- idGenerationMode :
DatasetIdGenEnum, optional Specifies option for generating dataset IDs. By default unique IDs are generated for each inserted dataset.
Returns: - refs :
listofDatasetRef Resolved
DatasetRefinstances for all given data IDs (in the same order).
Raises: - datasetType :
-
insertDimensionData(element: Union[lsst.daf.butler.core.dimensions._elements.DimensionElement, str], *data, conform: bool = True, replace: bool = False) → None¶ Insert one or more dimension records into the database.
Parameters: - element :
DimensionElementorstr The
DimensionElementor name thereof that identifies the table records will be inserted into.- data :
dictorDimensionRecord(variadic) One or more records to insert.
- conform :
bool, optional If
False(Trueis default) perform no checking or conversions, and assume thatelementis aDimensionElementinstance anddatais a one or moreDimensionRecordinstances of the appropriate subclass.- replace: `bool`, optional
If
True(Falseis default), replace existing records in the database if there is a conflict.
- element :
-
queryCollections(expression: Any = Ellipsis, datasetType: Optional[lsst.daf.butler.core.datasets.type.DatasetType] = None, collectionTypes: Union[Iterable[lsst.daf.butler.registry._collectionType.CollectionType], lsst.daf.butler.registry._collectionType.CollectionType] = frozenset({<CollectionType.RUN: 1>, <CollectionType.TAGGED: 2>, <CollectionType.CHAINED: 3>, <CollectionType.CALIBRATION: 4>}), flattenChains: bool = False, includeChains: Optional[bool] = None) → Iterator[str]¶ Iterate over the collections whose names match an expression.
Parameters: - expression :
Any, optional An expression that identifies the collections to return, such as a
str(for full matches or partial matches via globs),re.Pattern(for partial matches), or iterable thereof....can be used to return all collections, and is the default. See Collection expressions for more information.- datasetType :
DatasetType, optional If provided, only yield collections that may contain datasets of this type. This is a conservative approximation in general; it may yield collections that do not have any such datasets.
- collectionTypes :
AbstractSet[CollectionType] orCollectionType, optional If provided, only yield collections of these types.
- flattenChains :
bool, optional If
True(Falseis default), recursively yield the child collections of matchingCHAINEDcollections.- includeChains :
bool, optional If
True, yield records for matchingCHAINEDcollections. Default is the opposite offlattenChains: include either CHAINED collections or their children, but not both.
Yields: - collection :
str The name of a collection that matches
expression.
- expression :
-
queryDataIds(dimensions: Union[Iterable[Union[lsst.daf.butler.core.dimensions._elements.Dimension, str]], lsst.daf.butler.core.dimensions._elements.Dimension, str], *, dataId: Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any], None] = None, datasets: Optional[Any] = None, collections: Optional[Any] = None, where: Optional[str] = None, components: Optional[bool] = None, bind: Optional[Mapping[str, Any]] = None, check: bool = True, **kwargs) → lsst.daf.butler.core.dimensions._dataCoordinateIterable.DataCoordinateIterable¶ Query for data IDs matching user-provided criteria.
Parameters: - dimensions :
Dimensionorstr, or iterable thereof The dimensions of the data IDs to yield, as either
Dimensioninstances orstr. Will be automatically expanded to a completeDimensionGraph.- dataId :
dictorDataCoordinate, optional A data ID whose key-value pairs are used as equality constraints in the query.
- datasets :
Any, optional An expression that fully or partially identifies dataset types that should constrain the yielded data IDs. For example, including “raw” here would constrain the yielded
instrument,exposure,detector, andphysical_filtervalues to only those for which at least one “raw” dataset exists incollections. Allowed types includeDatasetType,str,re.Pattern, and iterables thereof. Unlike other dataset type expressions,...is not permitted - it doesn’t make sense to constrain data IDs on the existence of all datasets. See DatasetType expressions for more information.- collections: `Any`, optional
An expression that identifies the collections to search for datasets, such as a
str(for full matches or partial matches via globs),re.Pattern(for partial matches), or iterable thereof....can be used to search all collections (actually just allRUNcollections, because this will still find all datasets). If not provided,self.default.collectionsis used. Ignored unlessdatasetsis also passed. See Collection expressions for more information.- where :
str, optional A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information.
- components :
bool, optional If
True, apply all dataset expression patterns to component dataset type names as well. IfFalse, never apply patterns to components. IfNone(default), apply patterns to components only if their parent datasets were not matched by the expression. Fully-specified component datasets (strorDatasetTypeinstances) are always included.- bind :
Mapping, optional Mapping containing literal values that should be injected into the
whereexpression, keyed by the identifiers they replace.- check :
bool, optional If
True(default) check the query for consistency before executing it. This may reject some valid queries that resemble common mistakes (e.g. queries for visits without specifying an instrument).- **kwargs
Additional keyword arguments are forwarded to
DataCoordinate.standardizewhen processing thedataIdargument (and may be used to provide a constraining data ID even when thedataIdargument isNone).
Returns: - dataIds :
DataCoordinateQueryResults Data IDs matching the given query parameters. These are guaranteed to identify all dimensions (
DataCoordinate.hasFullreturnsTrue), but will not containDimensionRecordobjects (DataCoordinate.hasRecordsreturnsFalse). CallDataCoordinateQueryResults.expandedon the returned object to fetch those (and consider usingDataCoordinateQueryResults.materializeon the returned object first if the expected number of rows is very large). See documentation for those methods for additional information.
Raises: - dimensions :
-
queryDatasetAssociations(datasetType: Union[str, lsst.daf.butler.core.datasets.type.DatasetType], collections: Any = Ellipsis, *, collectionTypes: Iterable[lsst.daf.butler.registry._collectionType.CollectionType] = frozenset({<CollectionType.RUN: 1>, <CollectionType.TAGGED: 2>, <CollectionType.CHAINED: 3>, <CollectionType.CALIBRATION: 4>}), flattenChains: bool = False) → Iterator[lsst.daf.butler.core.datasets.association.DatasetAssociation]¶ Iterate over dataset-collection combinations where the dataset is in the collection.
This method is a temporary placeholder for better support for association results in
queryDatasets. It will probably be removed in the future, and should be avoided in production code whenever possible.Parameters: - datasetType :
DatasetTypeorstr A dataset type object or the name of one.
- collections: `Any`, optional
An expression that identifies the collections to search for datasets, such as a
str(for full matches or partial matches via globs),re.Pattern(for partial matches), or iterable thereof....can be used to search all collections (actually just allRUNcollections, because this will still find all datasets). If not provided,self.default.collectionsis used. See Collection expressions for more information.- collectionTypes :
AbstractSet[CollectionType], optional If provided, only yield associations from collections of these types.
- flattenChains :
bool, optional If
True(default) search in the children ofCHAINEDcollections. IfFalse,CHAINEDcollections are ignored.
Yields: - association :
DatasetAssociation Object representing the relationship between a single dataset and a single collection.
Raises: - datasetType :
-
queryDatasetTypes(expression: Any = Ellipsis, *, components: Optional[bool] = None, missing: Optional[List[str]] = None) → Iterator[lsst.daf.butler.core.datasets.type.DatasetType]¶ Iterate over the dataset types whose names match an expression.
Parameters: - expression :
Any, optional An expression that fully or partially identifies the dataset types to return, such as a
str,re.Pattern, or iterable thereof....can be used to return all dataset types, and is the default. See DatasetType expressions for more information.- components :
bool, optional If
True, apply all expression patterns to component dataset type names as well. IfFalse, never apply patterns to components. IfNone(default), apply patterns to components only if their parent datasets were not matched by the expression. Fully-specified component datasets (strorDatasetTypeinstances) are always included.- missing :
listofstr, optional String dataset type names that were explicitly given (i.e. not regular expression patterns) but not found will be appended to this list, if it is provided.
Yields: - datasetType :
DatasetType A
DatasetTypeinstance whose name matchesexpression.
- expression :
-
queryDatasets(datasetType: Any, *, collections: Optional[Any] = None, dimensions: Optional[Iterable[Union[lsst.daf.butler.core.dimensions._elements.Dimension, str]]] = None, dataId: Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any], None] = None, where: Optional[str] = None, findFirst: bool = False, components: Optional[bool] = None, bind: Optional[Mapping[str, Any]] = None, check: bool = True, **kwargs) → Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Query for and iterate over dataset references matching user-provided criteria.
Parameters: - datasetType
An expression that fully or partially identifies the dataset types to be queried. Allowed types include
DatasetType,str,re.Pattern, and iterables thereof. The special value...can be used to query all dataset types. See DatasetType expressions for more information.- collections: optional
An expression that identifies the collections to search, such as a
str(for full matches or partial matches via globs),re.Pattern(for partial matches), or iterable thereof....can be used to search all collections (actually just allRUNcollections, because this will still find all datasets). If not provided,self.default.collectionsis used. See Collection expressions for more information.- dimensions :
IterableofDimensionorstr Dimensions to include in the query (in addition to those used to identify the queried dataset type(s)), either to constrain the resulting datasets to those for which a matching dimension exists, or to relate the dataset type’s dimensions to dimensions referenced by the
dataIdorwherearguments.- dataId :
dictorDataCoordinate, optional A data ID whose key-value pairs are used as equality constraints in the query.
- where :
str, optional A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information.
- findFirst :
bool, optional If
True(Falseis default), for each result data ID, only yield oneDatasetRefof eachDatasetType, from the first collection in which a dataset of that dataset type appears (according to the order ofcollectionspassed in). IfTrue,collectionsmust not contain regular expressions and may not be....- components :
bool, optional If
True, apply all dataset expression patterns to component dataset type names as well. IfFalse, never apply patterns to components. IfNone(default), apply patterns to components only if their parent datasets were not matched by the expression. Fully-specified component datasets (strorDatasetTypeinstances) are always included.- bind :
Mapping, optional Mapping containing literal values that should be injected into the
whereexpression, keyed by the identifiers they replace.- check :
bool, optional If
True(default) check the query for consistency before executing it. This may reject some valid queries that resemble common mistakes (e.g. queries for visits without specifying an instrument).- **kwargs
Additional keyword arguments are forwarded to
DataCoordinate.standardizewhen processing thedataIdargument (and may be used to provide a constraining data ID even when thedataIdargument isNone).
Returns: - refs :
queries.DatasetQueryResults Dataset references matching the given query criteria. Nested data IDs are guaranteed to include values for all implied dimensions (i.e.
DataCoordinate.hasFullwill returnTrue), but will not include dimension records (DataCoordinate.hasRecordswill beFalse) unlessexpandedis called on the result object (which returns a new one).
Raises: Notes
When multiple dataset types are queried in a single call, the results of this operation are equivalent to querying for each dataset type separately in turn, and no information about the relationships between datasets of different types is included. In contexts where that kind of information is important, the recommended pattern is to use
queryDataIdsto first obtain data IDs (possibly with the desired dataset types and collections passed as constraints to the query), and then use multiple (generally much simpler) calls toqueryDatasetswith the returned data IDs passed as constraints.
-
queryDimensionRecords(element: Union[lsst.daf.butler.core.dimensions._elements.DimensionElement, str], *, dataId: Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any], None] = None, datasets: Optional[Any] = None, collections: Optional[Any] = None, where: Optional[str] = None, components: Optional[bool] = None, bind: Optional[Mapping[str, Any]] = None, check: bool = True, **kwargs) → Iterable[lsst.daf.butler.core.dimensions._records.DimensionRecord]¶ Query for dimension information matching user-provided criteria.
Parameters: - element :
DimensionElementorstr The dimension element to obtain records for.
- dataId :
dictorDataCoordinate, optional A data ID whose key-value pairs are used as equality constraints in the query.
- datasets :
Any, optional An expression that fully or partially identifies dataset types that should constrain the yielded records. See
queryDataIdsand DatasetType expressions for more information.- collections :
Any, optional An expression that identifies the collections to search for datasets, such as a
str(for full matches or partial matches via globs),re.Pattern(for partial matches), or iterable thereof....can be used to search all collections (actually just allRUNcollections, because this will still find all datasets). If not provided,self.default.collectionsis used. Ignored unlessdatasetsis also passed. See Collection expressions for more information.- where :
str, optional A string expression similar to a SQL WHERE clause. See
queryDataIdsand Dimension expressions for more information.- components :
bool, optional Whether to apply dataset expressions to components as well. See
queryDataIdsfor more information.- bind :
Mapping, optional Mapping containing literal values that should be injected into the
whereexpression, keyed by the identifiers they replace.- check :
bool, optional If
True(default) check the query for consistency before executing it. This may reject some valid queries that resemble common mistakes (e.g. queries for visits without specifying an instrument).- **kwargs
Additional keyword arguments are forwarded to
DataCoordinate.standardizewhen processing thedataIdargument (and may be used to provide a constraining data ID even when thedataIdargument isNone).
Returns: - dataIds :
Iterator[DimensionRecord] Data IDs matching the given query parameters.
- element :
-
refresh() → None¶ Refresh all in-memory state by querying the database.
This may be necessary to enable querying for entities added by other registry instances after this one was constructed.
-
registerCollection(name: str, type: lsst.daf.butler.registry._collectionType.CollectionType = <CollectionType.TAGGED: 2>, doc: Optional[str] = None) → bool¶ Add a new collection if one with the given name does not exist.
Parameters: - name :
str The name of the collection to create.
- type :
CollectionType Enum value indicating the type of collection to create.
- doc :
str, optional Documentation string for the collection.
Returns: - registered :
bool Boolean indicating whether the collection was already registered or was created by this call.
Notes
This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent.
- name :
-
registerDatasetType(datasetType: lsst.daf.butler.core.datasets.type.DatasetType) → bool¶ Add a new
DatasetTypeto the Registry.It is not an error to register the same
DatasetTypetwice.Parameters: - datasetType :
DatasetType The
DatasetTypeto be added.
Returns: Raises: - ValueError
Raised if the dimensions or storage class are invalid.
- ConflictingDefinitionError
Raised if this DatasetType is already registered with a different definition.
Notes
This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent.
- datasetType :
-
registerRun(name: str, doc: Optional[str] = None) → bool¶ Add a new run if one with the given name does not exist.
Parameters: Returns: Notes
This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent.
-
removeCollection(name: str) → None¶ Remove the given collection from the registry.
Parameters: - name :
str The name of the collection to remove.
Raises: - MissingCollectionError
Raised if no collection with the given name exists.
- sqlalchemy.IntegrityError
Raised if the database rows associated with the collection are still referenced by some other table, such as a dataset in a datastore (for
RUNcollections only) or aCHAINEDcollection of which this collection is a child.
Notes
If this is a
RUNcollection, all datasets and quanta in it will removed from theRegistrydatabase. This requires that those datasets be removed (or at least trashed) from any datastores that hold them first.A collection may not be deleted as long as it is referenced by a
CHAINEDcollection; theCHAINEDcollection must be deleted or redefined first.- name :
-
removeDatasetType(name: str) → None¶ Remove the named
DatasetTypefrom the registry.Warning
Registry implementations can cache the dataset type definitions. This means that deleting the dataset type definition may result in unexpected behavior from other butler processes that are active that have not seen the deletion.
Parameters: - name :
str Name of the type to be removed.
Raises: - lsst.daf.butler.registry.OrphanedRecordError
Raised if an attempt is made to remove the dataset type definition when there are already datasets associated with it.
Notes
If the dataset type is not registered the method will return without action.
- name :
-
removeDatasets(refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶ Remove datasets from the Registry.
The datasets will be removed unconditionally from all collections, and any
Quantumthat consumed this dataset will instead be marked with having a NULL input.Datastorerecords will not be deleted; the caller is responsible for ensuring that the dataset has already been removed from all Datastores.Parameters: - refs :
IterableofDatasetRef References to the datasets to be removed. Must include a valid
idattribute, and should be considered invalidated upon return.
Raises: - AmbiguousDatasetError
Raised if any
ref.idisNone.- OrphanedRecordError
Raised if any dataset is still present in any
Datastore.
- refs :
-
resetConnectionPool() → None¶ Reset connection pool for registry if relevant.
This operation can be used reset connections to servers when using registry with fork-based multiprocessing. This method should usually be called by the child process immediately after the fork.
The base class implementation is a no-op.
-
setCollectionChain(parent: str, children: Any, *, flatten: bool = False) → None¶ Define or redefine a
CHAINEDcollection.Parameters: - parent :
str Name of the chained collection. Must have already been added via a call to
Registry.registerCollection.- children :
Any An expression defining an ordered search of child collections, generally an iterable of
str; see Collection expressions for more information.- flatten :
bool, optional If
True(Falseis default), recursively flatten out any nestedCHAINEDcollections inchildrenfirst.
Raises: - parent :
-
setCollectionDocumentation(collection: str, doc: Optional[str]) → None¶ Set the documentation string for a collection.
Parameters:
-
supportsIdGenerationMode(mode: lsst.daf.butler.registry.interfaces._datasets.DatasetIdGenEnum) → bool¶ Test whether the given dataset ID generation mode is supported by
insertDatasets.Parameters: - mode :
DatasetIdGenEnum Enum value for the mode to test.
Returns: - supported :
bool Whether the given mode is supported.
- mode :
-
syncDimensionData(element: Union[lsst.daf.butler.core.dimensions._elements.DimensionElement, str], row: Union[Mapping[str, Any], lsst.daf.butler.core.dimensions._records.DimensionRecord], conform: bool = True, update: bool = False) → Union[bool, Dict[str, Any]]¶ Synchronize the given dimension record with the database, inserting if it does not already exist and comparing values if it does.
Parameters: - element :
DimensionElementorstr The
DimensionElementor name thereof that identifies the table records will be inserted into.- row :
dictorDimensionRecord The record to insert.
- conform :
bool, optional If
False(Trueis default) perform no checking or conversions, and assume thatelementis aDimensionElementinstance anddatais a one or moreDimensionRecordinstances of the appropriate subclass.- update: `bool`, optional
If
True(Falseis default), update the existing record in the database if there is a conflict.
Returns: Raises: - ConflictingDefinitionError
Raised if the record exists in the database (according to primary key lookup) but is inconsistent with the given one.
- element :
-
transaction(*, savepoint: bool = False) → Iterator[None]¶ Return a context manager that represents a transaction.
-