PhotonTransferCurveExtractTask

class lsst.cp.pipe.PhotonTransferCurveExtractTask(*, config: Optional[PipelineTaskConfig] = None, log: Optional[Union[logging.Logger, LsstLogAdapter]] = None, initInputs: Optional[Dict[str, Any]] = None, **kwargs)

Bases: lsst.pipe.base.PipelineTask, lsst.pipe.base.CmdLineTask

Task to measure covariances from flat fields.

This task receives as input a list of flat-field images (flats), and sorts these flats in pairs taken at the same time (the task will raise if there is one one flat at a given exposure time, and it will discard extra flats if there are more than two per exposure time). This task measures the mean, variance, and covariances from a region (e.g., an amplifier) of the difference image of the two flats with the same exposure time.

The variance is calculated via afwMath, and the covariance via the methods in Astier+19 (appendix A). In theory, var = covariance[0,0]. This should be validated, and in the future, we may decide to just keep one (covariance). At this moment, if the two values differ by more than the value of thresholdDiffAfwVarVsCov00 (default: 1%), a warning will be issued.

The measured covariances at a given exposure time (along with other quantities such as the mean) are stored in a PTC dataset object (PhotonTransferCurveDataset), which gets partially filled at this stage (the remainder of the attributes of the dataset will be filled after running the second task of the PTC-measurement pipeline, PhotonTransferCurveSolveTask).

The number of partially-filled PhotonTransferCurveDataset objects will be less than the number of input exposures because the task combines input flats in pairs. However, it is required at this moment that the number of input dimensions matches bijectively the number of output dimensions. Therefore, a number of “dummy” PTC datasets are inserted in the output list. This output list will then be used as input of the next task in the PTC-measurement pipeline, PhotonTransferCurveSolveTask, which will assemble the multiple PhotonTransferCurveDataset objects into a single one in order to fit the measured covariances as a function of flux to one of three models (see PhotonTransferCurveSolveTask for details).

Reference: Astier+19: “The Shape of the Photon Transfer Curve of CCD sensors”, arXiv:1905.08677.

Attributes Summary

canMultiprocess

Methods Summary

applyOverrides(config) A hook to allow a task to change the values of its config after the camera-specific overrides are loaded but before any command-line overrides are applied.
emptyMetadata() Empty (clear) the metadata for this Task and all sub-Tasks.
getAllSchemaCatalogs() Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
getFullMetadata() Get metadata for all tasks.
getFullName() Get the task name as a hierarchical name including parent task names.
getName() Get the name of the task.
getResourceConfig() Return resource configuration for this task.
getSchemaCatalogs() Get the schemas generated by this task.
getTaskDict() Get a dictionary of all tasks as a shallow copy.
makeCovArray(inputTuple, maxRangeFromTuple) Make covariances array from tuple.
makeField(doc) Make a lsst.pex.config.ConfigurableField for this task.
makeSubtask(name, **keyArgs) Create a subtask as a new instance as the name attribute of this task.
measureMeanVarCov(exposure1, exposure2[, region]) Calculate the mean of each of two exposures and the variance and covariance of their difference.
parseAndRun([args, config, log, doReturnResults]) Parse an argument list and run the command.
run(inputExp, inputDims) Measure covariances from difference of flat pairs
runQuantum(butlerQC, inputRefs, outputRefs) Ensure that the input and output dimensions are passed along.
timer(name, logLevel) Context manager to log performance data for an arbitrary block of code.
writeConfig(butler[, clobber, doBackup]) Write the configuration used for processing the data, or check that an existing one is equal to the new one if present.
writeMetadata(dataRef) Write the metadata produced from processing the data.
writePackageVersions(butler[, clobber, …]) Compare and write package versions.
writeSchemas(butler[, clobber, doBackup]) Write the schemas returned by lsst.pipe.base.Task.getAllSchemaCatalogs.

Attributes Documentation

canMultiprocess = True

Methods Documentation

classmethod applyOverrides(config)

A hook to allow a task to change the values of its config after the camera-specific overrides are loaded but before any command-line overrides are applied.

Parameters:
config : instance of task’s ConfigClass

Task configuration.

Notes

This is necessary in some cases because the camera-specific overrides may retarget subtasks, wiping out changes made in ConfigClass.setDefaults. See LSST Trac ticket #2282 for more discussion.

Warning

This is called by CmdLineTask.parseAndRun; other ways of constructing a config will not apply these overrides.

emptyMetadata() → None

Empty (clear) the metadata for this Task and all sub-Tasks.

getAllSchemaCatalogs() → Dict[str, Any]

Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.

Returns:
schemacatalogs : dict

Keys are butler dataset type, values are a empty catalog (an instance of the appropriate lsst.afw.table Catalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.

Notes

This method may be called on any task in the hierarchy; it will return the same answer, regardless.

The default implementation should always suffice. If your subtask uses schemas the override Task.getSchemaCatalogs, not this method.

getFullMetadata() → lsst.pipe.base._task_metadata.TaskMetadata

Get metadata for all tasks.

Returns:
metadata : TaskMetadata

The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.

Notes

The returned metadata includes timing information (if @timer.timeMethod is used) and any metadata set by the task. The name of each item consists of the full task name with . replaced by :, followed by . and the name of the item, e.g.:

topLevelTaskName:subtaskName:subsubtaskName.itemName

using : in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.

getFullName() → str

Get the task name as a hierarchical name including parent task names.

Returns:
fullName : str

The full name consists of the name of the parent task and each subtask separated by periods. For example:

  • The full name of top-level task “top” is simply “top”.
  • The full name of subtask “sub” of top-level task “top” is “top.sub”.
  • The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
getName() → str

Get the name of the task.

Returns:
taskName : str

Name of the task.

See also

getFullName

getResourceConfig() → Optional[ResourceConfig]

Return resource configuration for this task.

Returns:
Object of type `~config.ResourceConfig` or ``None`` if resource
configuration is not defined for this task.
getSchemaCatalogs() → Dict[str, Any]

Get the schemas generated by this task.

Returns:
schemaCatalogs : dict

Keys are butler dataset type, values are an empty catalog (an instance of the appropriate lsst.afw.table Catalog type) for this task.

See also

Task.getAllSchemaCatalogs

Notes

Warning

Subclasses that use schemas must override this method. The default implementation returns an empty dict.

This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data.

Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well.

getTaskDict() → Dict[str, weakref.ReferenceType[Task]]

Get a dictionary of all tasks as a shallow copy.

Returns:
taskDict : dict

Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.

makeCovArray(inputTuple, maxRangeFromTuple)

Make covariances array from tuple.

Parameters:
inputTuple : numpy.ndarray

Structured array with rows with at least (mu, afwVar, cov, var, i, j, npix), where:

mu : float

0.5*(m1 + m2), where mu1 is the mean value of flat1 and mu2 is the mean value of flat2.

afwVar : float

Variance of difference flat, calculated with afw.

cov : float

Covariance value at lag(i, j)

var : float

Variance(covariance value at lag(0, 0))

i : int

Lag in dimension “x”.

j : int

Lag in dimension “y”.

npix : int

Number of pixels used for covariance calculation.

maxRangeFromTuple : int

Maximum range to select from tuple.

Returns:
cov : numpy.array

Covariance arrays, indexed by mean signal mu.

vCov : numpy.array

Variance arrays, indexed by mean signal mu.

muVals : numpy.array

List of mean signal values.

classmethod makeField(doc: str) → lsst.pex.config.configurableField.ConfigurableField

Make a lsst.pex.config.ConfigurableField for this task.

Parameters:
doc : str

Help text for the field.

Returns:
configurableField : lsst.pex.config.ConfigurableField

A ConfigurableField for this task.

Examples

Provides a convenient way to specify this task is a subtask of another task.

Here is an example of use:

class OtherTaskConfig(lsst.pex.config.Config):
    aSubtask = ATaskClass.makeField("brief description of task")
makeSubtask(name: str, **keyArgs) → None

Create a subtask as a new instance as the name attribute of this task.

Parameters:
name : str

Brief name of the subtask.

keyArgs

Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:

  • “config”.
  • “parentTask”.

Notes

The subtask must be defined by Task.config.name, an instance of ConfigurableField or RegistryField.

measureMeanVarCov(exposure1, exposure2, region=None)

Calculate the mean of each of two exposures and the variance and covariance of their difference. The variance is calculated via afwMath, and the covariance via the methods in Astier+19 (appendix A). In theory, var = covariance[0,0]. This should be validated, and in the future, we may decide to just keep one (covariance).

Parameters:
exposure1 : lsst.afw.image.exposure.ExposureF

First exposure of flat field pair.

exposure2 : lsst.afw.image.exposure.ExposureF

Second exposure of flat field pair.

region : lsst.geom.Box2I, optional

Region of each exposure where to perform the calculations (e.g, an amplifier).

Returns:
mu : float or NaN

0.5*(mu1 + mu2), where mu1, and mu2 are the clipped means of the regions in both exposures. If either mu1 or m2 are NaN’s, the returned value is NaN.

varDiff : float or NaN

Half of the clipped variance of the difference of the regions inthe two input exposures. If either mu1 or m2 are NaN’s, the returned value is NaN.

covDiffAstier : list or NaN
List with tuples of the form (dx, dy, var, cov, npix), where:
dx : int

Lag in x

dy : int

Lag in y

var : float

Variance at (dx, dy).

cov : float

Covariance at (dx, dy).

nPix : int

Number of pixel pairs used to evaluate var and cov.

If either mu1 or m2 are NaN’s, the returned value is NaN.

classmethod parseAndRun(args=None, config=None, log=None, doReturnResults=False)

Parse an argument list and run the command.

Parameters:
args : list, optional

List of command-line arguments; if None use sys.argv.

config : lsst.pex.config.Config-type, optional

Config for task. If None use Task.ConfigClass.

log : logging.Logger-type, optional

Log. If None use the default log.

doReturnResults : bool, optional

If True, return the results of this task. Default is False. This is only intended for unit tests and similar use. It can easily exhaust memory (if the task returns enough data and you call it enough times) and it will fail when using multiprocessing if the returned data cannot be pickled.

Returns:
struct : lsst.pipe.base.Struct

Fields are:

argumentParser

the argument parser (lsst.pipe.base.ArgumentParser).

parsedCmd

the parsed command returned by the argument parser’s parse_args method (argparse.Namespace).

taskRunner

the task runner used to run the task (an instance of Task.RunnerClass).

resultList

results returned by the task runner’s run method, one entry per invocation (list). This will typically be a list of Struct, each containing at least an exitStatus integer (0 or 1); see Task.RunnerClass (TaskRunner by default) for more details.

Notes

Calling this method with no arguments specified is the standard way to run a command-line task from the command-line. For an example see pipe_tasks bin/makeSkyMap.py or almost any other file in that directory.

If one or more of the dataIds fails then this routine will exit (with a status giving the number of failed dataIds) rather than returning this struct; this behaviour can be overridden by specifying the --noExit command-line option.

run(inputExp, inputDims)

Measure covariances from difference of flat pairs

Parameters:
inputExp : dict [float, list

Dictionary that groups references to flat-field exposures that have the same exposure time (seconds), or that groups them sequentially by their exposure id.

inputDims : list

List of exposure IDs.

Returns:
results : lsst.pipe.base.Struct

The results struct containing:

outputCovariances

A list containing the per-pair PTC measurements (list [lsst.ip.isr.PhotonTransferCurveDataset])

runQuantum(butlerQC, inputRefs, outputRefs)

Ensure that the input and output dimensions are passed along.

Parameters:
butlerQC : ButlerQuantumContext

Butler to operate on.

inputRefs : InputQuantizedConnection

Input data refs to load.

ouptutRefs : OutputQuantizedConnection

Output data refs to persist.

timer(name: str, logLevel: int = 10) → Iterator[None]

Context manager to log performance data for an arbitrary block of code.

Parameters:
name : str

Name of code being timed; data will be logged using item name: Start and End.

logLevel

A logging level constant.

See also

timer.logInfo

Examples

Creating a timer context:

with self.timer("someCodeToTime"):
    pass  # code to time
writeConfig(butler, clobber=False, doBackup=True)

Write the configuration used for processing the data, or check that an existing one is equal to the new one if present.

Parameters:
butler : lsst.daf.persistence.Butler

Data butler used to write the config. The config is written to dataset type CmdLineTask._getConfigName.

clobber : bool, optional

A boolean flag that controls what happens if a config already has been saved:

  • True: overwrite or rename the existing config, depending on doBackup.
  • False: raise TaskError if this config does not match the existing config.
doBackup : bool, optional

Set to True to backup the config files if clobbering.

writeMetadata(dataRef)

Write the metadata produced from processing the data.

Parameters:
dataRef

Butler data reference used to write the metadata. The metadata is written to dataset type CmdLineTask._getMetadataName.

writePackageVersions(butler, clobber=False, doBackup=True, dataset='packages')

Compare and write package versions.

Parameters:
butler : lsst.daf.persistence.Butler

Data butler used to read/write the package versions.

clobber : bool, optional

A boolean flag that controls what happens if versions already have been saved:

  • True: overwrite or rename the existing version info, depending on doBackup.
  • False: raise TaskError if this version info does not match the existing.
doBackup : bool, optional

If True and clobbering, old package version files are backed up.

dataset : str, optional

Name of dataset to read/write.

Raises:
TaskError

Raised if there is a version mismatch with current and persisted lists of package versions.

Notes

Note that this operation is subject to a race condition.

writeSchemas(butler, clobber=False, doBackup=True)

Write the schemas returned by lsst.pipe.base.Task.getAllSchemaCatalogs.

Parameters:
butler : lsst.daf.persistence.Butler

Data butler used to write the schema. Each schema is written to the dataset type specified as the key in the dict returned by getAllSchemaCatalogs.

clobber : bool, optional

A boolean flag that controls what happens if a schema already has been saved:

  • True: overwrite or rename the existing schema, depending on doBackup.
  • False: raise TaskError if this schema does not match the existing schema.
doBackup : bool, optional

Set to True to backup the schema files if clobbering.

Notes

If clobber is False and an existing schema does not match a current schema, then some schemas may have been saved successfully and others may not, and there is no easy way to tell which is which.