CrosstalkSolveTask¶
-
class
lsst.cp.pipe.
CrosstalkSolveTask
(*, config: Optional[PipelineTaskConfig] = None, log: Optional[Union[logging.Logger, LsstLogAdapter]] = None, initInputs: Optional[Dict[str, Any]] = None, **kwargs)¶ Bases:
lsst.pipe.base.PipelineTask
Task to solve crosstalk from pixel ratios.
Attributes Summary
canMultiprocess
Methods Summary
debugRatios
(stepname, ratios, i, j[, coeff, …])Utility function to examine the final CT ratio set. emptyMetadata
()Empty (clear) the metadata for this Task and all sub-Tasks. filterCrosstalkCalib
(inCalib)Apply valid constraints to the measured values. getAllSchemaCatalogs
()Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. getFullMetadata
()Get metadata for all tasks. getFullName
()Get the task name as a hierarchical name including parent task names. getName
()Get the name of the task. getResourceConfig
()Return resource configuration for this task. getSchemaCatalogs
()Get the schemas generated by this task. getTaskDict
()Get a dictionary of all tasks as a shallow copy. makeField
(doc)Make a lsst.pex.config.ConfigurableField
for this task.makeSubtask
(name, **keyArgs)Create a subtask as a new instance as the name
attribute of this task.measureCrosstalkCoefficients
(ratios, …)Measure crosstalk coefficients from the ratios. run
(inputRatios[, inputFluxes, camera, …])Combine ratios to produce crosstalk coefficients. runQuantum
(butlerQC, inputRefs, outputRefs)Ensure that the input and output dimensions are passed along. timer
(name, logLevel)Context manager to log performance data for an arbitrary block of code. Attributes Documentation
-
canMultiprocess
= True¶
Methods Documentation
-
debugRatios
(stepname, ratios, i, j, coeff=0.0, valid=False)¶ Utility function to examine the final CT ratio set.
Parameters: - stepname :
str
State of processing to view.
- ratios :
dict
[dict
[numpy.ndarray
]] Array of measured CT ratios, indexed by source/victim amplifier. These arrays are one-dimensional.
- i :
str
Index of the source amplifier.
- j :
str
Index of the target amplifier.
- coeff :
float
, optional Coefficient calculated to plot along with the simple mean.
- valid :
bool
, optional Validity to be added to the plot title.
- stepname :
-
emptyMetadata
() → None¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
static
filterCrosstalkCalib
(inCalib)¶ Apply valid constraints to the measured values.
Any measured coefficient that is determined to be invalid is set to zero, and has the error set to nan. The validation is determined by checking that the measured coefficient is larger than the calculated standard error of the mean.
Parameters: - inCalib :
lsst.ip.isr.CrosstalkCalib
Input calibration to filter.
Returns: - outCalib :
lsst.ip.isr.CrosstalkCalib
Filtered calibration.
- inCalib :
-
getAllSchemaCatalogs
() → Dict[str, Any]¶ Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
Returns: - schemacatalogs :
dict
Keys are butler dataset type, values are a empty catalog (an instance of the appropriate
lsst.afw.table
Catalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
Notes
This method may be called on any task in the hierarchy; it will return the same answer, regardless.
The default implementation should always suffice. If your subtask uses schemas the override
Task.getSchemaCatalogs
, not this method.- schemacatalogs :
-
getFullMetadata
() → lsst.pipe.base._task_metadata.TaskMetadata¶ Get metadata for all tasks.
Returns: - metadata :
TaskMetadata
The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethod
is used) and any metadata set by the task. The name of each item consists of the full task name with.
replaced by:
, followed by.
and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:
in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName
() → str¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str
The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getResourceConfig
() → Optional[ResourceConfig]¶ Return resource configuration for this task.
Returns: - Object of type
ResourceConfig
orNone
if resource - configuration is not defined for this task.
- Object of type
-
getSchemaCatalogs
() → Dict[str, Any]¶ Get the schemas generated by this task.
Returns: - schemaCatalogs :
dict
Keys are butler dataset type, values are an empty catalog (an instance of the appropriate
lsst.afw.table
Catalog type) for this task.
See also
Task.getAllSchemaCatalogs
Notes
Warning
Subclasses that use schemas must override this method. The default implementation returns an empty dict.
This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data.
Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well.
- schemaCatalogs :
-
getTaskDict
() → Dict[str, weakref]¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict
Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
classmethod
makeField
(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶ Make a
lsst.pex.config.ConfigurableField
for this task.Parameters: - doc :
str
Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField
A
ConfigurableField
for this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask
(name: str, **keyArgs) → None¶ Create a subtask as a new instance as the
name
attribute of this task.Parameters: - name :
str
Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name
, an instance ofConfigurableField
orRegistryField
.- name :
-
measureCrosstalkCoefficients
(ratios, ordering, rejIter, rejSigma)¶ Measure crosstalk coefficients from the ratios.
Given a list of ratios for each target/source amp combination, we measure a sigma clipped mean and error.
The coefficient errors returned are the standard deviation of the final set of clipped input ratios.
Parameters: - ratios :
dict
[dict
[numpy.ndarray
]] Catalog of arrays of ratios. The ratio arrays are one-dimensional
- ordering :
list
[str
] or None List to use as a mapping between amplifier names (the elements of the list) and their position in the output calibration (the matching index of the list). If no ordering is supplied, the order of the keys in the ratio catalog is used.
- rejIter :
int
Number of rejection iterations.
- rejSigma :
float
Rejection threshold (sigma).
Returns: - calib :
lsst.ip.isr.CrosstalkCalib
The output crosstalk calibration.
- ratios :
-
run
(inputRatios, inputFluxes=None, camera=None, inputDims=None, outputDims=None)¶ Combine ratios to produce crosstalk coefficients.
Parameters: - inputRatios :
list
[dict
[dict
[dict
[dict
[list
]]]]] A list of nested dictionaries of ratios indexed by target and source chip, then by target and source amplifier.
- inputFluxes :
list
[dict
[dict
[list
]]] A list of nested dictionaries of source pixel fluxes, indexed by source chip and amplifier.
- camera :
lsst.afw.cameraGeom.Camera
Input camera.
- inputDims :
list
[lsst.daf.butler.DataCoordinate
] DataIds to use to construct provenance.
- outputDims :
list
[lsst.daf.butler.DataCoordinate
] DataIds to use to populate the output calibration.
Returns: - results :
lsst.pipe.base.Struct
The results struct containing:
outputCrosstalk
Final crosstalk calibration (
lsst.ip.isr.CrosstalkCalib
).outputProvenance
Provenance data for the new calibration (
lsst.ip.isr.IsrProvenance
).
Raises: - RuntimeError
Raised if the input data contains multiple target detectors.
- inputRatios :
-
runQuantum
(butlerQC, inputRefs, outputRefs)¶ Ensure that the input and output dimensions are passed along.
Parameters: - butlerQC :
lsst.daf.butler.butlerQuantumContext.ButlerQuantumContext
Butler to operate on.
- inputRefs :
lsst.pipe.base.InputQuantizedConnection
Input data refs to load.
- ouptutRefs :
lsst.pipe.base.OutputQuantizedConnection
Output data refs to persist.
- butlerQC :
-
timer
(name: str, logLevel: int = 10) → Iterator[None]¶ Context manager to log performance data for an arbitrary block of code.
Parameters: See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
-