.. py:currentmodule:: lsst.ap.pipe .. _lsst.ap.pipe: ############ lsst.ap.pipe ############ .. Paragraph that describes what this Python module does and links to related modules and frameworks. The ``lsst.ap.pipe`` module links together a set of common image processing tasks so that a user may run one command on a dataset of raw, ingested images rather than several. The Alert Production (AP) pipeline includes the following key data processing Tasks for LSST Prompt Data Products: `~lsst.ip.isr.IsrTask`, `~lsst.pipe.tasks.characterizeImage.CharacterizeImageTask`, `~lsst.pipe.tasks.calibrate.CalibrateTask`, `~lsst.ip.diffim.subtractImages.AlardLuptonSubtractTask`, `~lsst.ip.diffim.detectAndMeasure.DetectAndMeasureTask`, and `~lsst.ap.association.DiaPipelineTask`. At present, the alert production pipeline is implemented using the Gen 3 framework: - ``ApPipe`` is an `lsst.pipe.base.Pipeline` that reads and writes data using the :ref:`lsst.daf.butler` package. .. TODO: add links to Gen 3 docs as they become available Overview ======== .. toctree:: :maxdepth: 1 pipeline-overview .. _lsst.ap.pipe-using: .. _lsst.ap.pipe-using-gen3: Using lsst.ap.pipe in Gen 3 =========================== .. toctree:: :maxdepth: 1 getting-started pipeline-tutorial apdb pipeline-bps .. _lsst.ap.pipe-contributing: Contributing ============ ``lsst.ap.pipe`` is developed at https://github.com/lsst/ap_pipe. You can find Jira issues for this module under the `ap_pipe <https://jira.lsstcorp.org/issues/?jql=project%20%3D%20DM%20AND%20component%20%3D%20ap_pipe>`_ component. .. If there are topics related to developing this module (rather than using it), link to this from a toctree placed here. Script reference ================ .. toctree:: :maxdepth: 1 scripts/make_apdb.py .. _lsst.ap.pipe-pyapi: Python API reference ==================== .. automodapi:: lsst.ap.pipe :no-main-docstr: :no-inheritance-diagram: