TractMatchedPreparationConnections¶
-
class
lsst.faro.preparation.
TractMatchedPreparationConnections
(*, config=None)¶ Bases:
lsst.faro.base.MatchedBaseConnections
Attributes Summary
Methods Summary
adjustQuantum
(inputs, …)Override to make adjustments to lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.buildDatasetRefs
(quantum)Builds QuantizedConnections corresponding to input Quantum Attributes Documentation
-
allConnections
= {'astromCalibs': Input(name='{wcsName}', storageClass='Wcs', doc='WCS for the catalog.', multiple=True, dimensions=('instrument', 'visit', 'detector', 'band'), isCalibration=False, deferLoad=False, minimum=1), 'externalPhotoCalibGlobalCatalog': Input(name='{externalPhotoCalibName}PhotoCalibCatalog', storageClass='ExposureCatalog', doc='Per-visit photometric calibrations computed globally (with no tract information). These catalogs use the detector id for the catalog id, sorted on id for fast lookup.', multiple=True, dimensions=('instrument', 'visit', 'band'), isCalibration=False, deferLoad=False, minimum=1), 'externalPhotoCalibTractCatalog': Input(name='{externalPhotoCalibName}PhotoCalibCatalog', storageClass='ExposureCatalog', doc='Per-tract, per-visit photometric calibrations. These catalogs use the detector id for the catalog id, sorted on id for fast lookup.', multiple=True, dimensions=('instrument', 'visit', 'tract', 'band'), isCalibration=False, deferLoad=False, minimum=1), 'externalSkyWcsGlobalCatalog': Input(name='{externalWcsName}SkyWcsCatalog', storageClass='ExposureCatalog', doc='Per-visit wcs calibrations computed globally (with no tract information). These catalogs use the detector id for the catalog id, sorted on id for fast lookup.', multiple=True, dimensions=('instrument', 'visit', 'band'), isCalibration=False, deferLoad=False, minimum=1), 'externalSkyWcsTractCatalog': Input(name='{externalWcsName}SkyWcsCatalog', storageClass='ExposureCatalog', doc='Per-tract, per-visit wcs calibrations. These catalogs use the detector id for the catalog id, sorted on id for fast lookup.', multiple=True, dimensions=('instrument', 'visit', 'tract', 'band'), isCalibration=False, deferLoad=False, minimum=1), 'outputCatalog': Output(name='matchedCatalogTract', storageClass='SimpleCatalog', doc='Resulting matched catalog.', multiple=False, dimensions=('tract', 'instrument', 'band'), isCalibration=False), 'photoCalibs': Input(name='{photoCalibName}', storageClass='PhotoCalib', doc='Photometric calibration object.', multiple=True, dimensions=('instrument', 'visit', 'detector', 'band'), isCalibration=False, deferLoad=False, minimum=1), 'skyMap': Input(name='skyMap', storageClass='SkyMap', doc='Input definition of geometry/bbox and projection/wcs for warped exposures', multiple=False, dimensions=('skymap',), isCalibration=False, deferLoad=False, minimum=1), 'sourceCatalogs': Input(name='src', storageClass='SourceCatalog', doc='Source catalogs to match up.', multiple=True, dimensions=('instrument', 'visit', 'detector', 'band'), isCalibration=False, deferLoad=False, minimum=1)}¶
-
astromCalibs
¶
-
defaultTemplates
= {'coaddName': 'deep', 'externalPhotoCalibName': 'fgcm', 'externalWcsName': 'jointcal', 'photoCalibName': 'calexp.photoCalib', 'wcsName': 'calexp.wcs'}¶
-
dimensions
= {'band', 'instrument', 'skymap', 'tract'}¶
-
externalPhotoCalibGlobalCatalog
¶
-
externalPhotoCalibTractCatalog
¶
-
externalSkyWcsGlobalCatalog
¶
-
externalSkyWcsTractCatalog
¶
-
initInputs
= frozenset()¶
-
initOutputs
= frozenset()¶
-
inputs
= frozenset({'externalSkyWcsGlobalCatalog', 'sourceCatalogs', 'skyMap', 'astromCalibs', 'externalSkyWcsTractCatalog', 'photoCalibs', 'externalPhotoCalibTractCatalog', 'externalPhotoCalibGlobalCatalog'})¶
-
outputCatalog
¶
-
outputs
= frozenset({'outputCatalog'})¶
-
photoCalibs
¶
-
prerequisiteInputs
= frozenset()¶
-
skyMap
¶
-
sourceCatalogs
¶
Methods Documentation
-
adjustQuantum
(inputs: Dict[str, Tuple[lsst.pipe.base.connectionTypes.BaseInput, Collection[lsst.daf.butler.core.datasets.ref.DatasetRef]]], outputs: Dict[str, Tuple[lsst.pipe.base.connectionTypes.Output, Collection[lsst.daf.butler.core.datasets.ref.DatasetRef]]], label: str, data_id: lsst.daf.butler.core.dimensions._coordinate.DataCoordinate) → Tuple[Mapping[str, Tuple[lsst.pipe.base.connectionTypes.BaseInput, Collection[lsst.daf.butler.core.datasets.ref.DatasetRef]]], Mapping[str, Tuple[lsst.pipe.base.connectionTypes.Output, Collection[lsst.daf.butler.core.datasets.ref.DatasetRef]]]]¶ Override to make adjustments to
lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.Parameters: - inputs :
dict
Dictionary whose keys are an input (regular or prerequisite) connection name and whose values are a tuple of the connection instance and a collection of associated
DatasetRef
objects. The exact type of the nested collections is unspecified; it can be assumed to be multi-pass iterable and supportlen
andin
, but it should not be mutated in place. In contrast, the outer dictionaries are guaranteed to be temporary copies that are truedict
instances, and hence may be modified and even returned; this is especially useful for delegating tosuper
(see notes below).- outputs :
Mapping
Mapping of output datasets, with the same structure as
inputs
.- label :
str
Label for this task in the pipeline (should be used in all diagnostic messages).
- data_id :
lsst.daf.butler.DataCoordinate
Data ID for this quantum in the pipeline (should be used in all diagnostic messages).
Returns: - adjusted_inputs :
Mapping
Mapping of the same form as
inputs
with updated containers of inputDatasetRef
objects. Connections that are not changed should not be returned at all. Datasets may only be removed, not added. Nested collections may be of any multi-pass iterable type, and the order of iteration will set the order of iteration withinPipelineTask.runQuantum
.- adjusted_outputs :
Mapping
Mapping of updated output datasets, with the same structure and interpretation as
adjusted_inputs
.
Raises: - ScalarError
Raised if any
Input
orPrerequisiteInput
connection hasmultiple
set toFalse
, but multiple datasets.- NoWorkFound
Raised to indicate that this quantum should not be run; not enough datasets were found for a regular
Input
connection, and the quantum should be pruned or skipped.- FileNotFoundError
Raised to cause QuantumGraph generation to fail (with the message included in this exception); not enough datasets were found for a
PrerequisiteInput
connection.
Notes
The base class implementation performs important checks. It always returns an empty mapping (i.e. makes no adjustments). It should always called be via
super
by custom implementations, ideally at the end of the custom implementation with already-adjusted mappings when any datasets are actually dropped, e.g.:def adjustQuantum(self, inputs, outputs, label, data_id): # Filter out some dataset refs for one connection. connection, old_refs = inputs["my_input"] new_refs = [ref for ref in old_refs if ...] adjusted_inputs = {"my_input", (connection, new_refs)} # Update the original inputs so we can pass them to super. inputs.update(adjusted_inputs) # Can ignore outputs from super because they are guaranteed # to be empty. super().adjustQuantum(inputs, outputs, label_data_id) # Return only the connections we modified. return adjusted_inputs, {}
Removing outputs here is guaranteed to affect what is actually passed to
PipelineTask.runQuantum
, but its effect on the larger graph may be deferred to execution, depending on the context in whichadjustQuantum
is being run: if one quantum removes an output that is needed by a second quantum as input, the second quantum may not be adjusted (and hence pruned or skipped) until that output is actually found to be missing at execution time.Tasks that desire zip-iteration consistency between any combinations of connections that have the same data ID should generally implement
adjustQuantum
to achieve this, even if they could also run that logic during execution; this allows the system to see outputs that will not be produced because the corresponding input is missing as early as possible.- inputs :
-
buildDatasetRefs
(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
Parameters: - quantum :
lsst.daf.butler.Quantum
Quantum object which defines the inputs and outputs for a given unit of processing
Returns: - retVal :
tuple
of (InputQuantizedConnection
, OutputQuantizedConnection
) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- quantum :
-