DipoleFitAlgorithm¶
- class lsst.ip.diffim.DipoleFitAlgorithm(diffim, posImage=None, negImage=None)¶
- Bases: - object- Fit a dipole model using an image difference. - See also: DMTN-007: Dipole characterization for image differencing. - Methods Summary - displayFitResults(footprint, result)- Display data, model fits and residuals (currently uses matplotlib display functions). - fitDipole(source[, tol, rel_weight, ...])- Fit a dipole model to an input - diaSource(wraps- fitDipoleImpl).- fitDipoleImpl(source[, tol, rel_weight, ...])- Fit a dipole model to an input difference image. - Methods Documentation - displayFitResults(footprint, result)¶
- Display data, model fits and residuals (currently uses matplotlib display functions). - Parameters:
- footprintTODO: DM-17458
- Footprint containing the dipole that was fit 
- resultlmfit.MinimizerResult
- lmfit.MinimizerResultobject returned by- lmfitoptimizer
 
- Returns:
 
 - fitDipole(source, tol=1e-07, rel_weight=0.1, fitBackground=1, maxSepInSigma=5.0, separateNegParams=True, bgGradientOrder=1, verbose=False, display=False)¶
- Fit a dipole model to an input - diaSource(wraps- fitDipoleImpl).- Actually, fits the subimage bounded by the input source’s footprint) and optionally constrain the fit using the pre-subtraction images self.posImage (science) and self.negImage (template). Wraps the output into a - pipeBase.Structnamed tuple after computing additional statistics such as orientation and SNR.- Parameters:
- sourcelsst.afw.table.SourceRecord
- Record containing the (merged) dipole source footprint detected on the diffim 
- tolfloat, optional
- Tolerance parameter for scipy.leastsq() optimization 
- rel_weightfloat, optional
- Weighting of posImage/negImage relative to the diffim in the fit 
- fitBackgroundint, {0, 1, 2}, optional
- How to fit linear background gradient in posImage/negImage - 0: do not fit background at all 
- 1 (default): pre-fit the background using linear least squares and then do not fit it as part of the dipole fitting optimization 
- 2: pre-fit the background using linear least squares (as in 1), and use the parameter estimates from that fit as starting parameters for an integrated “re-fit” of the background as part of the overall dipole fitting optimization. 
 
- maxSepInSigmafloat, optional
- Allowed window of centroid parameters relative to peak in input source footprint 
- separateNegParamsbool, optional
- Fit separate parameters to the flux and background gradient in 
- bgGradientOrderint, {0, 1, 2}, optional
- Desired polynomial order of background gradient 
- verbose: `bool`, optional
- Be verbose 
- display
- Display input data, best fit model(s) and residuals in a matplotlib window. 
 
- source
- Returns:
 - Notes - Parameter - fitBackgroundhas three options, thus it is an integer:
 - fitDipoleImpl(source, tol=1e-07, rel_weight=0.5, fitBackground=1, bgGradientOrder=1, maxSepInSigma=5.0, separateNegParams=True, verbose=False)¶
- Fit a dipole model to an input difference image. - Actually, fits the subimage bounded by the input source’s footprint) and optionally constrain the fit using the pre-subtraction images posImage and negImage. - Parameters:
- sourceTODO: DM-17458
- TODO: DM-17458 
- tolfloat, optional
- TODO: DM-17458 
- rel_weightfloat, optional
- TODO: DM-17458 
- fitBackgroundint, optional
- TODO: DM-17458 
- bgGradientOrderint, optional
- TODO: DM-17458 
- maxSepInSigmafloat, optional
- TODO: DM-17458 
- separateNegParamsbool, optional
- TODO: DM-17458 
- verbosebool, optional
- TODO: DM-17458 
 
- Returns:
- resultlmfit.MinimizerResult
- return - lmfit.MinimizerResultobject containing the fit parameters and other information.
 
- result