SerializedQuantum¶
- class lsst.daf.butler.SerializedQuantum(*, taskName: str | None = None, dataId: SerializedDataCoordinate | None = None, datasetTypeMapping: Mapping[str, SerializedDatasetType], initInputs: Mapping[str, tuple[lsst.daf.butler._dataset_ref.SerializedDatasetRef, list[int]]], inputs: Mapping[str, list[tuple[lsst.daf.butler._dataset_ref.SerializedDatasetRef, list[int]]]], outputs: Mapping[str, list[tuple[lsst.daf.butler._dataset_ref.SerializedDatasetRef, list[int]]]], dimensionRecords: dict[int, lsst.daf.butler.dimensions._records.SerializedDimensionRecord] | None = None, datastoreRecords: dict[str, lsst.daf.butler.datastore.record_data.SerializedDatastoreRecordData] | None = None)¶
- Bases: - BaseModel- Simplified model of a - Quantumsuitable for serialization.- Attributes Summary - Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].- Metadata about the fields defined on the model, mapping of field names to [ - FieldInfo][pydantic.fields.FieldInfo].- Methods Summary - direct(*, taskName, dataId, ...)- Construct a - SerializedQuantumdirectly without validators.- Attributes Documentation - model_config: ClassVar[ConfigDict] = {}¶
- Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].
 - model_fields: ClassVar[dict[str, FieldInfo]] = {'dataId': FieldInfo(annotation=Union[SerializedDataCoordinate, NoneType], required=False), 'datasetTypeMapping': FieldInfo(annotation=Mapping[str, SerializedDatasetType], required=True), 'datastoreRecords': FieldInfo(annotation=Union[dict[str, SerializedDatastoreRecordData], NoneType], required=False), 'dimensionRecords': FieldInfo(annotation=Union[dict[int, SerializedDimensionRecord], NoneType], required=False), 'initInputs': FieldInfo(annotation=Mapping[str, tuple[SerializedDatasetRef, list[int]]], required=True), 'inputs': FieldInfo(annotation=Mapping[str, list[tuple[SerializedDatasetRef, list[int]]]], required=True), 'outputs': FieldInfo(annotation=Mapping[str, list[tuple[SerializedDatasetRef, list[int]]]], required=True), 'taskName': FieldInfo(annotation=Union[str, NoneType], required=False)}¶
- Metadata about the fields defined on the model, mapping of field names to [ - FieldInfo][pydantic.fields.FieldInfo].- This replaces - Model.__fields__from Pydantic V1.
 - Methods Documentation - classmethod direct(*, taskName: str | None, dataId: dict | None, datasetTypeMapping: Mapping[str, dict], initInputs: Mapping[str, tuple[dict, list[int]]], inputs: Mapping[str, list[tuple[dict, list[int]]]], outputs: Mapping[str, list[tuple[dict, list[int]]]], dimensionRecords: dict[int, dict] | None, datastoreRecords: dict[str, dict] | None) SerializedQuantum¶
- Construct a - SerializedQuantumdirectly without validators.- Parameters:
- taskNamestrorNone
- The name of the task. 
- dataIddictorNone
- The dataId of the quantum. 
- datasetTypeMappingMapping[str,dict]
- Dataset type definitions. 
- initInputsMapping
- The quantum init inputs. 
- inputsMapping
- The quantum inputs. 
- outputsMapping
- The quantum outputs. 
- dimensionRecordsdict[int,dict] orNone
- The dimension records. 
- datastoreRecordsdict[str,dict] orNone
- The datastore records. 
 
- taskName
- Returns:
- quantumSerializedQuantum
- Serializable model of the quantum. 
 
- quantum
 - Notes - This differs from the pydantic “construct” method in that the arguments are explicitly what the model requires, and it will recurse through members, constructing them from their corresponding - directmethods.- This method should only be called when the inputs are trusted.