WriteRecalibratedSourceTableTask

class lsst.pipe.tasks.postprocess.WriteRecalibratedSourceTableTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)

Bases: WriteSourceTableTask

Write source table to DataFrame Parquet format.

Attributes Summary

canMultiprocess

Methods Summary

addCalibColumns(catalog, exposure, **kwargs)

Add replace columns with calibs evaluated at each centroid

emptyMetadata()

Empty (clear) the metadata for this Task and all sub-Tasks.

getFullMetadata()

Get metadata for all tasks.

getFullName()

Get the task name as a hierarchical name including parent task names.

getName()

Get the name of the task.

getTaskDict()

Get a dictionary of all tasks as a shallow copy.

makeField(doc)

Make a lsst.pex.config.ConfigurableField for this task.

makeSubtask(name, **keyArgs)

Create a subtask as a new instance as the name attribute of this task.

prepareCalibratedExposure(exposure, detectorId)

Prepare a calibrated exposure and apply external calibrations if so configured.

run(catalog, visit, detector, **kwargs)

Convert src catalog to DataFrame

runQuantum(butlerQC, inputRefs, outputRefs)

Do butler IO and transform to provide in memory objects for tasks run method.

timer(name[, logLevel])

Context manager to log performance data for an arbitrary block of code.

Attributes Documentation

canMultiprocess: ClassVar[bool] = True

Methods Documentation

addCalibColumns(catalog, exposure, **kwargs)

Add replace columns with calibs evaluated at each centroid

Add or replace ‘base_LocalWcs’ `base_LocalPhotoCalib’ columns in a a source catalog, by rerunning the plugins.

Parameters:
cataloglsst.afw.table.SourceCatalog

catalog to which calib columns will be added

exposurelsst.afw.image.exposure.Exposure

Exposure with attached PhotoCalibs and SkyWcs attributes to be reevaluated at local centroids. Pixels are not required.

**kwargs

Additional keyword arguments are ignored to facilitate passing the same arguments to several methods.

Returns:
newCat: lsst.afw.table.SourceCatalog

Source Catalog with requested local calib columns

emptyMetadata() None

Empty (clear) the metadata for this Task and all sub-Tasks.

getFullMetadata() TaskMetadata

Get metadata for all tasks.

Returns:
metadataTaskMetadata

The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.

Notes

The returned metadata includes timing information (if @timer.timeMethod is used) and any metadata set by the task. The name of each item consists of the full task name with . replaced by :, followed by . and the name of the item, e.g.:

topLevelTaskName:subtaskName:subsubtaskName.itemName

using : in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.

getFullName() str

Get the task name as a hierarchical name including parent task names.

Returns:
fullNamestr

The full name consists of the name of the parent task and each subtask separated by periods. For example:

  • The full name of top-level task “top” is simply “top”.

  • The full name of subtask “sub” of top-level task “top” is “top.sub”.

  • The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.

getName() str

Get the name of the task.

Returns:
taskNamestr

Name of the task.

See also

getFullName

Get the full name of the task.

getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]

Get a dictionary of all tasks as a shallow copy.

Returns:
taskDictdict

Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.

classmethod makeField(doc: str) ConfigurableField

Make a lsst.pex.config.ConfigurableField for this task.

Parameters:
docstr

Help text for the field.

Returns:
configurableFieldlsst.pex.config.ConfigurableField

A ConfigurableField for this task.

Examples

Provides a convenient way to specify this task is a subtask of another task.

Here is an example of use:

class OtherTaskConfig(lsst.pex.config.Config):
    aSubtask = ATaskClass.makeField("brief description of task")
makeSubtask(name: str, **keyArgs: Any) None

Create a subtask as a new instance as the name attribute of this task.

Parameters:
namestr

Brief name of the subtask.

**keyArgs

Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:

  • config.

  • parentTask.

Notes

The subtask must be defined by Task.config.name, an instance of ConfigurableField or RegistryField.

prepareCalibratedExposure(exposure, detectorId, visitSummary=None)

Prepare a calibrated exposure and apply external calibrations if so configured.

Parameters:
exposurelsst.afw.image.exposure.Exposure

Input exposure to adjust calibrations. May be an empty Exposure.

detectorIdint

Detector ID associated with the exposure.

visitSummarylsst.afw.table.ExposureCatalog, optional

Exposure catalog with all calibration objects. WCS and PhotoCalib are always applied if visitSummary is provided and those components are not None.

Returns:
exposurelsst.afw.image.exposure.Exposure

Exposure with adjusted calibrations.

run(catalog, visit, detector, **kwargs)

Convert src catalog to DataFrame

Parameters:
catalog: `afwTable.SourceCatalog`

catalog to be converted

visit, detector: `int`

Visit and detector ids to be added as columns.

**kwargs

Additional keyword arguments are ignored as a convenience for subclasses that pass the same arguments to several different methods.

Returns:
resultStruct
table

DataFrame version of the input catalog

runQuantum(butlerQC, inputRefs, outputRefs)

Do butler IO and transform to provide in memory objects for tasks run method.

Parameters:
butlerQCQuantumContext

A butler which is specialized to operate in the context of a lsst.daf.butler.Quantum.

inputRefsInputQuantizedConnection

Datastructure whose attribute names are the names that identify connections defined in corresponding PipelineTaskConnections class. The values of these attributes are the lsst.daf.butler.DatasetRef objects associated with the defined input/prerequisite connections.

outputRefsOutputQuantizedConnection

Datastructure whose attribute names are the names that identify connections defined in corresponding PipelineTaskConnections class. The values of these attributes are the lsst.daf.butler.DatasetRef objects associated with the defined output connections.

timer(name: str, logLevel: int = 10) Iterator[None]

Context manager to log performance data for an arbitrary block of code.

Parameters:
namestr

Name of code being timed; data will be logged using item name: Start and End.

logLevelint

A logging level constant.

See also

lsst.utils.timer.logInfo

Implementation function.

Examples

Creating a timer context:

with self.timer("someCodeToTime"):
    pass  # code to time