WriteRecalibratedSourceTableTask¶
- class lsst.pipe.tasks.postprocess.WriteRecalibratedSourceTableTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)¶
Bases:
WriteSourceTableTask
Write source table to DataFrame Parquet format.
Attributes Summary
Methods Summary
addCalibColumns
(catalog, exposure, **kwargs)Add replace columns with calibs evaluated at each centroid
Empty (clear) the metadata for this Task and all sub-Tasks.
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName
()Get the name of the task.
Get a dictionary of all tasks as a shallow copy.
makeField
(doc)Make a
lsst.pex.config.ConfigurableField
for this task.makeSubtask
(name, **keyArgs)Create a subtask as a new instance as the
name
attribute of this task.prepareCalibratedExposure
(exposure, detectorId)Prepare a calibrated exposure and apply external calibrations if so configured.
run
(catalog, visit, detector, **kwargs)Convert
src
catalog to DataFramerunQuantum
(butlerQC, inputRefs, outputRefs)Do butler IO and transform to provide in memory objects for tasks
run
method.timer
(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Attributes Documentation
Methods Documentation
- addCalibColumns(catalog, exposure, **kwargs)¶
Add replace columns with calibs evaluated at each centroid
Add or replace ‘base_LocalWcs’ `base_LocalPhotoCalib’ columns in a a source catalog, by rerunning the plugins.
- Parameters:
- catalog
lsst.afw.table.SourceCatalog
catalog to which calib columns will be added
- exposure
lsst.afw.image.exposure.Exposure
Exposure with attached PhotoCalibs and SkyWcs attributes to be reevaluated at local centroids. Pixels are not required.
- **kwargs
Additional keyword arguments are ignored to facilitate passing the same arguments to several methods.
- catalog
- Returns:
- newCat:
lsst.afw.table.SourceCatalog
Source Catalog with requested local calib columns
- newCat:
- getFullMetadata() TaskMetadata ¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata
The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethod
is used) and any metadata set by the task. The name of each item consists of the full task name with.
replaced by:
, followed by.
and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:
in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str ¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str
The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- getName() str ¶
Get the name of the task.
- Returns:
- taskName
str
Name of the task.
- taskName
See also
getFullName
Get the full name of the task.
- getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]] ¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict
Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- classmethod makeField(doc: str) ConfigurableField ¶
Make a
lsst.pex.config.ConfigurableField
for this task.- Parameters:
- doc
str
Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField
A
ConfigurableField
for this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None ¶
Create a subtask as a new instance as the
name
attribute of this task.- Parameters:
- name
str
Brief name of the subtask.
- **keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
config
.parentTask
.
- name
Notes
The subtask must be defined by
Task.config.name
, an instance ofConfigurableField
orRegistryField
.
- prepareCalibratedExposure(exposure, detectorId, visitSummary=None)¶
Prepare a calibrated exposure and apply external calibrations if so configured.
- Parameters:
- exposure
lsst.afw.image.exposure.Exposure
Input exposure to adjust calibrations. May be an empty Exposure.
- detectorId
int
Detector ID associated with the exposure.
- visitSummary
lsst.afw.table.ExposureCatalog
, optional Exposure catalog with all calibration objects. WCS and PhotoCalib are always applied if
visitSummary
is provided and those components are notNone
.
- exposure
- Returns:
- exposure
lsst.afw.image.exposure.Exposure
Exposure with adjusted calibrations.
- exposure
- run(catalog, visit, detector, **kwargs)¶
Convert
src
catalog to DataFrame- Parameters:
- catalog: `afwTable.SourceCatalog`
catalog to be converted
- visit, detector: `int`
Visit and detector ids to be added as columns.
- **kwargs
Additional keyword arguments are ignored as a convenience for subclasses that pass the same arguments to several different methods.
- Returns:
- result
Struct
table
DataFrame
version of the input catalog
- result
- runQuantum(butlerQC, inputRefs, outputRefs)¶
Do butler IO and transform to provide in memory objects for tasks
run
method.- Parameters:
- butlerQC
QuantumContext
A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum
.- inputRefs
InputQuantizedConnection
Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnections
class. The values of these attributes are thelsst.daf.butler.DatasetRef
objects associated with the defined input/prerequisite connections.- outputRefs
OutputQuantizedConnection
Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnections
class. The values of these attributes are thelsst.daf.butler.DatasetRef
objects associated with the defined output connections.
- butlerQC