QuantumReport¶
- class lsst.ctrl.mpexec.QuantumReport(dataId: DataId, taskLabel: str, status: ExecutionStatus = ExecutionStatus.SUCCESS, exitCode: int | None = None, exceptionInfo: ExceptionInfo | None = None)¶
- Bases: - BaseModel- Task execution report for a single Quantum. - Parameters:
- dataIdDataId
- Quantum data ID. 
- taskLabelstr
- Label for task executing this Quantum. 
- statusExecutionStatus
- Status of this quantum execution. 
- exitCodeintorNone, optional
- Exit code for sub-process executing this Quantum. - Nonefor in-process execution. Negative if process was killed by a signal.
- exceptionInfoExceptionInfoorNone, optional
- Exception information if an exception was raised. 
 
- dataId
 - Attributes Summary - Get the computed fields of this model instance. - Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].- Get extra fields set during validation. - Metadata about the fields defined on the model, mapping of field names to [ - FieldInfo][pydantic.fields.FieldInfo].- Returns the set of fields that have been explicitly set on this model instance. - Methods Summary - construct([_fields_set])- copy(*[, include, exclude, update, deep])- Returns a copy of the model. - dict(*[, include, exclude, by_alias, ...])- from_exception(exception, dataId, taskLabel)- Construct report instance from an exception and other pieces of data. - from_exit_code(exitCode, dataId, taskLabel)- Construct report instance from an exit code and other pieces of data. - from_orm(obj)- json(*[, include, exclude, by_alias, ...])- model_construct([_fields_set])- Creates a new instance of the - Modelclass with validated data.- model_copy(*[, update, deep])- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy - model_dump(*[, mode, include, exclude, ...])- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump - model_dump_json(*[, indent, include, ...])- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json - model_json_schema([by_alias, ref_template, ...])- Generates a JSON schema for a model class. - model_parametrized_name(params)- Compute the class name for parametrizations of generic classes. - model_post_init(_BaseModel__context)- Override this method to perform additional initialization after - __init__and- model_construct.- model_rebuild(*[, force, raise_errors, ...])- Try to rebuild the pydantic-core schema for the model. - model_validate(obj, *[, strict, ...])- Validate a pydantic model instance. - model_validate_json(json_data, *[, strict, ...])- Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing - model_validate_strings(obj, *[, strict, context])- Validate the given object contains string data against the Pydantic model. - parse_file(path, *[, content_type, ...])- parse_obj(obj)- parse_raw(b, *[, content_type, encoding, ...])- schema([by_alias, ref_template])- schema_json(*[, by_alias, ref_template])- update_forward_refs(**localns)- validate(value)- Attributes Documentation - model_computed_fields¶
- Get the computed fields of this model instance. - Returns:
- A dictionary of computed field names and their corresponding - ComputedFieldInfoobjects.
 
 - model_config: ClassVar[ConfigDict] = {}¶
- Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].
 - model_extra¶
- Get extra fields set during validation. - Returns:
- A dictionary of extra fields, or - Noneif- config.extrais not set to- "allow".
 
 - model_fields: ClassVar[dict[str, FieldInfo]] = {'dataId': FieldInfo(annotation=dict[str, Union[int, str, NoneType]], required=True), 'exceptionInfo': FieldInfo(annotation=Union[ExceptionInfo, NoneType], required=False), 'exitCode': FieldInfo(annotation=Union[int, NoneType], required=False), 'status': FieldInfo(annotation=ExecutionStatus, required=False, default=<ExecutionStatus.SUCCESS: 'success'>), 'taskLabel': FieldInfo(annotation=Union[str, NoneType], required=True)}¶
- Metadata about the fields defined on the model, mapping of field names to [ - FieldInfo][pydantic.fields.FieldInfo].- This replaces - Model.__fields__from Pydantic V1.
 - model_fields_set¶
- Returns the set of fields that have been explicitly set on this model instance. - Returns:
- A set of strings representing the fields that have been set,
- i.e. that were not filled from defaults. 
 
 
 - Methods Documentation - copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model¶
- Returns a copy of the model. - !!! warning “Deprecated”
- This method is now deprecated; use - model_copyinstead.
 - If you need - includeor- exclude, use:- `py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
- include: Optional set or mapping
- specifying which fields to include in the copied model. 
- exclude: Optional set or mapping
- specifying which fields to exclude in the copied model. 
- update: Optional dictionary of field-value pairs to override field values
- in the copied model. 
 - deep: If True, the values of fields that are Pydantic models will be deep copied. 
- Returns:
- A copy of the model with included, excluded and updated fields as specified. 
 
 - dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]¶
 - classmethod from_exception(exception: Exception, dataId: DataCoordinate | Mapping[str, Any], taskLabel: str) QuantumReport¶
- Construct report instance from an exception and other pieces of data. 
 - classmethod from_exit_code(exitCode: int, dataId: DataCoordinate | Mapping[str, Any], taskLabel: str) QuantumReport¶
- Construct report instance from an exit code and other pieces of data. 
 - classmethod from_orm(obj: Any) Model¶
 - json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str¶
 - classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model¶
- Creates a new instance of the - Modelclass with validated data.- Creates a new model setting - __dict__and- __pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if- Config.extra = 'allow'was set since it adds all passed values- Args:
- _fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary. 
- Returns:
- A new instance of the - Modelclass with validated data.
 
 - model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model¶
- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy - Returns a copy of the model. - Args:
- update: Values to change/add in the new model. Note: the data is not validated
- before creating the new model. You should trust this data. 
 - deep: Set to - Trueto make a deep copy of the model.
- Returns:
- New model instance. 
 
 - model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]¶
- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump - Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. - Args:
- mode: The mode in which to_pythonshould run.
- If mode is ‘json’, the dictionary will only contain JSON serializable types. If mode is ‘python’, the dictionary may contain any Python objects. 
 - include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value from the output. exclude_none: Whether to exclude fields that have a value of - Nonefrom the output. round_trip: Whether to enable serialization and deserialization round-trip support. warnings: Whether to log warnings when invalid fields are encountered.
- mode: The mode in which 
- Returns:
- A dictionary representation of the model. 
 
 - model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str¶
- Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json - Generates a JSON representation of the model using Pydantic’s - to_jsonmethod.- Args:
- indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. Can take either a string or set of strings. exclude: Field(s) to exclude from the JSON output. Can take either a string or set of strings. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that have the default value. exclude_none: Whether to exclude fields that have a value of - None. round_trip: Whether to use serialization/deserialization between JSON and class instance. warnings: Whether to show any warnings that occurred during serialization.
- Returns:
- A JSON string representation of the model. 
 
 - classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]¶
- Generates a JSON schema for a model class. - Args:
- by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of - GenerateJsonSchemawith your desired modifications- mode: The mode in which to generate the schema. 
- Returns:
- The JSON schema for the given model class. 
 
 - classmethod model_parametrized_name(params: tuple[type[Any], ...]) str¶
- Compute the class name for parametrizations of generic classes. - This method can be overridden to achieve a custom naming scheme for generic BaseModels. - Args:
- params: Tuple of types of the class. Given a generic class
- Modelwith 2 type variables and a concrete model- Model[str, int], the value- (str, int)would be passed to- params.
 
- Returns:
- String representing the new class where - paramsare passed to- clsas type variables.
- Raises:
- TypeError: Raised when trying to generate concrete names for non-generic models. 
 
 - model_post_init(_BaseModel__context: Any) None¶
- Override this method to perform additional initialization after - __init__and- model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
 - classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None¶
- Try to rebuild the pydantic-core schema for the model. - This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails. - Args:
- force: Whether to force the rebuilding of the model schema, defaults to - False. raise_errors: Whether to raise errors, defaults to- True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to- None.
- Returns:
- Returns - Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns- Trueif rebuilding was successful, otherwise- False.
 
 - classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model¶
- Validate a pydantic model instance. - Args:
- obj: The object to validate. strict: Whether to raise an exception on invalid fields. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. 
- Raises:
- ValidationError: If the object could not be validated. 
- Returns:
- The validated model instance. 
 
 - classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model¶
- Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing - Validate the given JSON data against the Pydantic model. - Args:
- json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. 
- Returns:
- The validated Pydantic model. 
- Raises:
- ValueError: If - json_datais not a JSON string.
 
 - classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model¶
- Validate the given object contains string data against the Pydantic model. - Args:
- obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. 
- Returns:
- The validated Pydantic model. 
 
 - classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model¶
 - classmethod parse_obj(obj: Any) Model¶
 - classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model¶
 - classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str¶
 - classmethod validate(value: Any) Model¶