DatasetProvenance¶
- class lsst.daf.butler.DatasetProvenance(*, inputs: list[lsst.daf.butler._dataset_ref.SerializedDatasetRef] = <factory>, quantum_id: ~uuid.UUID | None = None, extras: dict[uuid.UUID, dict[str, int | float | str | bool]] = <factory>)¶
- Bases: - BaseModel- Provenance of a single - DatasetRef.- Attributes Summary - Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].- Methods Summary - add_extra_provenance(dataset_id, extra)- Attach extra provenance to a specific dataset. - add_input(ref)- Add an input dataset to the provenance. - model_post_init(context, /)- This function is meant to behave like a BaseModel method to initialise private attributes. - Attributes Documentation - model_config: ClassVar[ConfigDict] = {}¶
- Configuration for the model, should be a dictionary conforming to [ - ConfigDict][pydantic.config.ConfigDict].
 - Methods Documentation - add_extra_provenance(dataset_id: UUID, extra: dict[str, int | float | str | bool]) None¶
- Attach extra provenance to a specific dataset. - Parameters:
- dataset_iduuid.UUID
- The ID of the dataset to receive this provenance. 
- extradict[str,typing.Any]
- The extra provenance information as a dictionary. The values must be simple Python scalars. 
 
- dataset_id
 
 - add_input(ref: DatasetRef) None¶
- Add an input dataset to the provenance. - Parameters:
- refDatasetRef
- A dataset to register as an input. 
 
- ref