GbdesAstrometricMultibandFitTask¶
- class lsst.drp.tasks.gbdesAstrometricFit.GbdesAstrometricMultibandFitTask(**kwargs)¶
Bases:
GbdesAstrometricFitTaskCalibrate the WCS across multiple visits in multiple filters of the same field using the GBDES package.
Attributes Summary
Methods Summary
Empty (clear) the metadata for this Task and all sub-Tasks.
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName()Get the name of the task.
Get a dictionary of all tasks as a shallow copy.
makeField(doc)Make a
lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the
nameattribute of this task.make_yaml(inputVisitSummary[, inputFile, ...])Make a YAML-type object that describes the parameters of the fit model.
run(inputCatalogRefs, inputVisitSummaries[, ...])Run the WCS fit for a given set of visits
runQuantum(butlerQC, inputRefs, outputRefs)Do butler IO and transform to provide in memory objects for tasks
runmethod.timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Attributes Documentation
Methods Documentation
- getFullMetadata() TaskMetadata¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- getName() str¶
Get the name of the task.
- Returns:
- taskName
str Name of the task.
- taskName
See also
getFullNameGet the full name of the task.
- getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- classmethod makeField(doc: str) ConfigurableField¶
Make a
lsst.pex.config.ConfigurableFieldfor this task.- Parameters:
- doc
str Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None¶
Create a subtask as a new instance as the
nameattribute of this task.- Parameters:
- name
str Brief name of the subtask.
- **keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
config.parentTask.
- name
Notes
The subtask must be defined by
Task.config.name, an instance ofConfigurableFieldorRegistryField.
- make_yaml(inputVisitSummary, inputFile=None, inputCameraModel=None)¶
Make a YAML-type object that describes the parameters of the fit model.
- Parameters:
- inputVisitSummary
lsst.afw.table.ExposureCatalog Catalog with per-detector summary information.
- inputFile
str Path to a file that contains a basic model.
- inputCameraModel
dict[str,np.ndarray], optional Parameters to use for the device part of the model.
- inputVisitSummary
- Returns:
- run(inputCatalogRefs, inputVisitSummaries, instrumentName='', refEpoch=None, refObjectLoader=None, inputCameraModel=None, colorCatalog=None, inputCamera=None, nCores=1)¶
Run the WCS fit for a given set of visits
- Parameters:
- inputCatalogRefs
list[DeferredDatasetHandle] List of handles pointing to visit-level source tables.
- inputVisitSummaries
list[lsst.afw.table.ExposureCatalog] List of catalogs with per-detector summary information.
- instrumentName
str, optional Name of the instrument used. This is only used for labelling.
- refEpoch
float Epoch of the reference objects in MJD.
- refObjectLoaderinstance of
lsst.meas.algorithms.loadReferenceObjects.ReferenceObjectLoaderReference object loader instance.- inputCameraModel
dict[str,np.ndarray], optional Parameters to use for the device part of the model.
- colorCatalog
lsst.afw.table.SimpleCatalog Catalog containing object coordinates and magnitudes.
- inputCamera
lsst.afw.cameraGeom.Camera, optional Camera to be used as template when constructing new camera.
- nCores
int, optional Number of cores to use during WCS fit.
- inputCatalogRefs
- Returns:
- result
lsst.pipe.base.Struct outputWcsslist[lsst.afw.table.ExposureCatalog]List of exposure catalogs (one per visit) with the WCS for each detector set by the new fitted WCS.
fitModelwcsfit.WCSFitModel-fitting object with final model parameters.
outputCatalogpyarrow.TableCatalog with fit residuals of all sources used.
starCatalogpyarrow.TableCatalog with best-fit positions of the objects fit.
modelParamsdictParameters and covariance of the best-fit WCS model.
cameraModelParamsdict[str,np.ndarray]Parameters of the device part of the model, in the format needed as input for future runs.
colorParamsdict[int,np.ndarray]DCR parameters fit in RA and Dec directions for each visit.
cameralsst.afw.cameraGeom.CameraCamera object constructed from the per-detector model.
- result
- runQuantum(butlerQC, inputRefs, outputRefs)¶
Do butler IO and transform to provide in memory objects for tasks
runmethod.- Parameters:
- butlerQC
QuantumContext A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum.- inputRefs
InputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.- outputRefs
OutputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined output connections.
- butlerQC