PcaPsfDeterminerConfig#

class lsst.meas.algorithms.PcaPsfDeterminerConfig(*args, **kw)#

Bases: BasePsfDeterminerConfig

Attributes Summary

borderWidth

Number of pixels to ignore around the edge of PSF candidate postage stamps (int, default 0)

constantWeight

Should each PSF candidate be given the same weight, independent of magnitude? (bool, default True)

doMaskBlends

Mask blends in image? (bool, default True)

doRejectBlends

Reject candidates that are blended? (bool, default False)

downsampleRandomSeed

Random seed to use to downsample candidates.

lam

floor for variance is lam*data (float, default 0.05)

maxCandidates

Maximum number of candidates to consider.

nEigenComponents

number of eigen components for PSF kernel creation (int, default 4)

nIterForPsf

number of iterations of PSF candidate star list (int, default 3)

nStarPerCell

number of stars per psf cell for PSF kernel creation (int, default 3)

nStarPerCellSpatialFit

number of stars per psf Cell for spatial fitting (int, default 5)

nonLinearSpatialFit

Use non-linear fitter for spatial variation of Kernel (bool, default False)

pixelThreshold

Threshold (stdev) for rejecting extraneous pixels around candidate; applied if positive (float, default 0.0)

reducedChi2ForPsfCandidates

for psf candidate evaluation (float, default 2.0)

sizeCellX

size of cell used to determine PSF (pixels, column direction) (int, default 256)

sizeCellY

size of cell used to determine PSF (pixels, row direction) (int, default 256)

spatialOrder

specify spatial order for PSF kernel creation (int, default 2)

spatialReject

Rejection threshold (stdev) for candidates based on spatial fit (float, default 3.0)

stampSize

Size of the postage stamp (in native pixels) to render the PSF model.

tolerance

tolerance of spatial fitting (float, default 0.01)

Methods Summary

setDefaults()

Subclass hook for computing defaults.

Attributes Documentation

borderWidth#

Number of pixels to ignore around the edge of PSF candidate postage stamps (int, default 0)

constantWeight#

Should each PSF candidate be given the same weight, independent of magnitude? (bool, default True)

doMaskBlends#

Mask blends in image? (bool, default True)

doRejectBlends#

Reject candidates that are blended? (bool, default False)

downsampleRandomSeed#

Random seed to use to downsample candidates. (int, default 98765)

lam#

floor for variance is lam*data (float, default 0.05)

maxCandidates#

Maximum number of candidates to consider. Will down-sample if given more. (int, default 300)

nEigenComponents#

number of eigen components for PSF kernel creation (int, default 4)

nIterForPsf#

number of iterations of PSF candidate star list (int, default 3)

nStarPerCell#

number of stars per psf cell for PSF kernel creation (int, default 3)

nStarPerCellSpatialFit#

number of stars per psf Cell for spatial fitting (int, default 5)

nonLinearSpatialFit#

Use non-linear fitter for spatial variation of Kernel (bool, default False)

pixelThreshold#

Threshold (stdev) for rejecting extraneous pixels around candidate; applied if positive (float, default 0.0)

reducedChi2ForPsfCandidates#

for psf candidate evaluation (float, default 2.0)

sizeCellX#

size of cell used to determine PSF (pixels, column direction) (int, default 256)

sizeCellY#

size of cell used to determine PSF (pixels, row direction) (int, default 256)

spatialOrder#

specify spatial order for PSF kernel creation (int, default 2)

spatialReject#

Rejection threshold (stdev) for candidates based on spatial fit (float, default 3.0)

stampSize#

Size of the postage stamp (in native pixels) to render the PSF model. Should be odd. (int, default None)

tolerance#

tolerance of spatial fitting (float, default 0.01)

Methods Documentation

setDefaults()#

Subclass hook for computing defaults.

Notes#

Derived Config classes that must compute defaults rather than using the Field instances’s defaults should do so here. To correctly use inherited defaults, implementations of setDefaults must call their base class’s setDefaults.