TransformCatalogBaseTask#
- class lsst.pipe.tasks.postprocess.TransformCatalogBaseTask(*args, **kwargs)#
Bases:
PipelineTaskBase class for transforming/standardizing a catalog by applying functors that convert units and apply calibrations.
The purpose of this task is to perform a set of computations on an input
DeferredDatasetHandleorInMemoryDatasetHandlethat holds aDataFramedataset (such asdeepCoadd_obj), and write the results to a new dataset (which needs to be declared in anoutputDatasetattribute).The calculations to be performed are defined in a YAML file that specifies a set of functors to be computed, provided as a
--functorFileconfig parameter. An example of such a YAML file is the following:- funcs:
- sourceId:
functor: Index
- x:
functor: Column args: slot_Centroid_x
- y:
functor: Column args: slot_Centroid_y
- psfFlux:
functor: LocalNanojansky args:
slot_PsfFlux_instFlux
slot_PsfFlux_instFluxErr
base_LocalPhotoCalib
base_LocalPhotoCalibErr
- psfFluxErr:
functor: LocalNanojanskyErr args:
slot_PsfFlux_instFlux
slot_PsfFlux_instFluxErr
base_LocalPhotoCalib
base_LocalPhotoCalibErr
- flags:
detect_isPrimary
The names for each entry under “func” will become the names of columns in the output dataset. All the functors referenced are defined in
functors. Positional arguments to be passed to each functor are in theargslist, and any additional entries for each column other than “functor” or “args” (e.g.,'filt','dataset') are treated as keyword arguments to be passed to the functor initialization.The “flags” entry is the default shortcut for
Columnfunctors. All columns listed under “flags” will be copied to the output table untransformed. They can be of any datatype. In the special case of transforming a multi-level oject table with band and dataset indices (deepCoadd_obj), these will be taked from themeasdataset and exploded out per band.There are two special shortcuts that only apply when transforming multi-level Object (deepCoadd_obj) tables:
The “refFlags” entry is shortcut for
Columnfunctor taken from therefdataset if transforming an ObjectTable.The “forcedFlags” entry is shortcut for
Columnfunctors. taken from theforced_srcdataset if transforming an ObjectTable. These are expanded out per band.
This task uses the
lsst.pipe.tasks.postprocess.PostprocessAnalysisobject to organize and excecute the calculations.Attributes Summary
Methods Summary
getAnalysis(handles[, funcs, band])run(handle[, funcs, dataId, band])Do postprocessing calculations
runQuantum(butlerQC, inputRefs, outputRefs)Do butler IO and transform to provide in memory objects for tasks
runmethod.transform(band, handles, funcs, dataId)Attributes Documentation
- ConfigClass: ClassVar[type[PipelineTaskConfig]]#
- inputDataset#
- outputDataset#
Methods Documentation
- getAnalysis(handles, funcs=None, band=None)#
- getFunctors()#
- run(handle, funcs=None, dataId=None, band=None)#
Do postprocessing calculations
Takes a
DeferredDatasetHandleorInMemoryDatasetHandleorDataFrameobject and dataId, returns a dataframe with results of postprocessing calculations.Parameters#
- handles
DeferredDatasetHandleor InMemoryDatasetHandleorDataFrame, or list of these.DataFrames from which calculations are done.
- funcs
Functor Functors to apply to the table’s columns
- dataIddict, optional
Used to add a
patchIdcolumn to the output dataframe.- band
str, optional Filter band that is being processed.
Returns#
- result
lsst.pipe.base.Struct Result struct, with a single
outputCatalogattribute holding the transformed catalog.
- handles
- runQuantum(butlerQC, inputRefs, outputRefs)#
Do butler IO and transform to provide in memory objects for tasks
runmethod.Parameters#
- butlerQC
QuantumContext A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum.- inputRefs
InputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.- outputRefs
OutputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined output connections.
- butlerQC
- transform(band, handles, funcs, dataId)#