ProcessCcdWithFakesTask#
- class lsst.pipe.tasks.processCcdWithFakes.ProcessCcdWithFakesTask(*args, **kwargs)#
Bases:
PipelineTaskInsert fake objects into calexps.
Add fake stars and galaxies to the given calexp, specified in the dataRef. Galaxy parameters are read in from the specified file and then modelled using galsim. Re-runs characterize image and calibrate image to give a new background estimation and measurement of the calexp.
ProcessFakeSourcesTaskinherits six functions from insertFakesTask that make images of the fake sources and then add them to the calexp.addPixCoordsUse the WCS information to add the pixel coordinates of each source Adds an
xandycolumn to the catalog of fake sources.trimFakeCatTrim the fake cat to about the size of the input image.
mkFakeGalsimGalaxiesUse Galsim to make fake double sersic galaxies for each set of galaxy parameters in the input file.
mkFakeStarsUse the PSF information from the calexp to make a fake star using the magnitude information from the input file.
cleanCatRemove rows of the input fake catalog which have half light radius, of either the bulge or the disk, that are 0.
addFakeSourcesAdd the fake sources to the calexp.
Notes#
The
calexpwith fake souces added to it is written out as the datatypecalexp_fakes.Deprecated since version v28.0: This task will be removed in v28.0 as it is replaced by
source_injectiontasks.Methods Summary
composeFakeCat(fakeCats, skyMap)Concatenate the fakeCats from tracts that may cover the exposure.
copyCalibrationFields(calibCat, sourceCat, ...)Match sources in calibCat and sourceCat and copy the specified fields
getVisitMatchedFakeCat(fakeCat, exposure)Trim the fakeCat to select particular visit
run(fakeCats, exposure, skyMap[, wcs, ...])Add fake sources to a calexp and then run detection, deblending and measurement.
runQuantum(butlerQC, inputRefs, outputRefs)Do butler IO and transform to provide in memory objects for tasks
runmethod.Methods Documentation
- composeFakeCat(fakeCats, skyMap)#
Concatenate the fakeCats from tracts that may cover the exposure.
Parameters#
- fakeCats
listoflsst.daf.butler.DeferredDatasetHandle Set of fake cats to concatenate.
- skyMap
lsst.skymap.SkyMap SkyMap defining the geometry of the tracts and patches.
Returns#
- combinedFakeCat
pandas.DataFrame All fakes that cover the inner polygon of the tracts in this quantum.
- fakeCats
- copyCalibrationFields(calibCat, sourceCat, fieldsToCopy)#
Match sources in calibCat and sourceCat and copy the specified fields
Parameters#
- calibCat
lsst.afw.table.SourceCatalog Catalog from which to copy fields.
- sourceCat
lsst.afw.table.SourceCatalog Catalog to which to copy fields.
- fieldsToCopy
lsst.pex.config.listField.List Fields to copy from calibCat to SoourceCat.
Returns#
- newCat
lsst.afw.table.SourceCatalog Catalog which includes the copied fields.
The fields copied are those specified by
fieldsToCopythat actually exist in the schema ofcalibCat.This version was based on and adapted from the one in calibrateTask.
- calibCat
- getVisitMatchedFakeCat(fakeCat, exposure)#
Trim the fakeCat to select particular visit
Parameters#
- fakeCat
pandas.core.frame.DataFrame The catalog of fake sources to add to the exposure
- exposure
lsst.afw.image.exposure.exposure.ExposureF The exposure to add the fake sources to
Returns#
- movingFakeCat
pandas.DataFrame All fakes that belong to the visit
- fakeCat
- run(fakeCats, exposure, skyMap, wcs=None, photoCalib=None, icSourceCat=None, sfdSourceCat=None, externalSkyWcsGlobalCatalog=None, externalSkyWcsTractCatalog=None, externalPhotoCalibGlobalCatalog=None, externalPhotoCalibTractCatalog=None, idGenerator=None)#
Add fake sources to a calexp and then run detection, deblending and measurement.
Parameters#
- fakeCats
listoflsst.daf.butler.DeferredDatasetHandle Set of tract level fake catalogs that potentially cover this detectorVisit.
- exposure
lsst.afw.image.exposure.exposure.ExposureF The exposure to add the fake sources to.
- skyMap
lsst.skymap.SkyMap SkyMap defining the tracts and patches the fakes are stored over.
- wcs
lsst.afw.geom.SkyWcs, optional WCS to use to add fake sources.
- photoCalib
lsst.afw.image.photoCalib.PhotoCalib, optional Photometric calibration to be used to calibrate the fake sources.
- icSourceCat
lsst.afw.table.SourceCatalog, optional Catalog to take the information about which sources were used for calibration from.
- sfdSourceCat
lsst.afw.table.SourceCatalog, optional Catalog produced by singleFrameDriver, needed to copy some calibration flags from.
- externalSkyWcsGlobalCatalog
lsst.afw.table.ExposureCatalog, optional Exposure catalog with external skyWcs to be applied per config.
- externalSkyWcsTractCatalog
lsst.afw.table.ExposureCatalog, optional Exposure catalog with external skyWcs to be applied per config.
- externalPhotoCalibGlobalCatalog
lsst.afw.table.ExposureCatalog, optional Exposure catalog with external photoCalib to be applied per config
- externalPhotoCalibTractCatalog
lsst.afw.table.ExposureCatalog, optional Exposure catalog with external photoCalib to be applied per config.
- idGenerator
lsst.meas.base.IdGenerator, optional Object that generates Source IDs and random seeds.
Returns#
- resultStruct
lsst.pipe.base.struct.Struct Result struct containing:
outputExposure:
lsst.afw.image.exposure.exposure.ExposureFoutputCat:
lsst.afw.table.source.source.SourceCatalog
Notes#
Adds pixel coordinates for each source to the fakeCat and removes objects with bulge or disk half light radius = 0 (if
config.cleanCat = True). These columns are calledxandyand are in pixels.Adds the
Fakemask plane to the exposure which is then set byaddFakeSourcesto mark where fake sources have been added. Uses the information in thefakeCatto make fake galaxies (using galsim) and fake stars, using the PSF models from the PSF information for the calexp. These are then added to the calexp and the calexp with fakes included returned.The galsim galaxies are made using a double sersic profile, one for the bulge and one for the disk, this is then convolved with the PSF at that point.
- fakeCats
- runQuantum(butlerQC, inputRefs, outputRefs)#
Do butler IO and transform to provide in memory objects for tasks
runmethod.Parameters#
- butlerQC
QuantumContext A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum.- inputRefs
InputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.- outputRefs
OutputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined output connections.
- butlerQC