LeastSquares#

class lsst.afw.math.LeastSquares#

Bases: pybind11_object

Attributes Summary

Methods Summary

fromDesignMatrix(design, data, factorization)

fromNormalEquations(fisher, rhs, factorization)

getCovariance(self)

getDiagnostic(self, arg0)

getDimension(self)

getFactorization(self)

getFisherMatrix(self)

getRank(self)

getSolution(self)

getThreshold(self)

setDesignMatrix(self, arg0, arg1)

setNormalEquations(self, arg0, arg1)

setThreshold(self, arg0)

Attributes Documentation

DIRECT_SVD = <Factorization.DIRECT_SVD: 2>#
NORMAL_CHOLESKY = <Factorization.NORMAL_CHOLESKY: 1>#
NORMAL_EIGENSYSTEM = <Factorization.NORMAL_EIGENSYSTEM: 0>#

Methods Documentation

static fromDesignMatrix(design: numpy.ndarray, data: numpy.ndarray, factorization: lsst.afw.math.LeastSquares.Factorization = <Factorization.???: 0>) lsst.afw.math.LeastSquares#
static fromNormalEquations(fisher: numpy.ndarray, rhs: numpy.ndarray, factorization: lsst.afw.math.LeastSquares.Factorization = <Factorization.???: 0>) lsst.afw.math.LeastSquares#
getCovariance(self: lsst.afw.math.LeastSquares) numpy.ndarray#
getDiagnostic(self: lsst.afw.math.LeastSquares, arg0: lsst.afw.math.LeastSquares.Factorization) numpy.ndarray#
getDimension(self: lsst.afw.math.LeastSquares) int#
getFactorization(self: lsst.afw.math.LeastSquares) lsst.afw.math.LeastSquares.Factorization#
getFisherMatrix(self: lsst.afw.math.LeastSquares) numpy.ndarray#
getRank(self: lsst.afw.math.LeastSquares) int#
getSolution(self: lsst.afw.math.LeastSquares) numpy.ndarray#
getThreshold(self: lsst.afw.math.LeastSquares) float#
setDesignMatrix(self: lsst.afw.math.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) None#
setNormalEquations(self: lsst.afw.math.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) None#
setThreshold(self: lsst.afw.math.LeastSquares, arg0: SupportsFloat) None#