PsfMatchConfigDF#

class lsst.ip.diffim.PsfMatchConfigDF(*args, **kw)#

Bases: PsfMatchConfig

The parameters specific to the delta-function (one basis per-pixel) Psf-matching basis

Attributes Summary

afwBackgroundConfig

Controlling the Afw background fitting (SubtractBackgroundConfig, default <class 'lsst.meas.algorithms.subtractBackground.SubtractBackgroundConfig'>)

badMaskPlanes

Mask planes to ignore when calculating diffim statistics Options: NO_DATA EDGE SAT BAD CR INTRP (List, default ('NO_DATA', 'EDGE', 'SAT'))

calculateKernelUncertainty

Calculate kernel and background uncertainties for each kernel candidate? This comes from the inverse of the covariance matrix.

candidateCoreRadius

Radius for calculation of stats in 'core' of KernelCandidate diffim.

candidateResidualMeanMax

Rejects KernelCandidates yielding bad difference image quality.

candidateResidualStdMax

Rejects KernelCandidates yielding bad difference image quality.

centralRegularizationStencil

Type of stencil to approximate central derivative (for centralDifference only) (int, default 9)

checkConditionNumber

Test for maximum condition number when inverting a kernel matrix.

conditionNumberType

Use singular values (SVD) or eigen values (EIGENVALUE) to determine condition number (str, default 'EIGENVALUE')

constantVarianceWeighting

Use constant variance weighting in single kernel fitting? In some cases this is better for bright star residuals.

fitForBackground

Include terms (including kernel cross terms) for background in ip_diffim (bool, default False)

forwardRegularizationOrders

Array showing which order derivatives to penalize (for forwardDifference only) (List, default (1, 2))

iterateSingleKernel

Remake KernelCandidate using better variance estimate after first pass? Primarily useful when convolving a single-depth image, otherwise not necessary.

kernelBasisSet

Type of basis set for PSF matching kernel.

kernelSize

Number of rows/columns in the convolution kernel; should be odd-valued.

kernelSizeFwhmScaling

Multiplier of the largest AL Gaussian basis sigma to get the kernel bbox (pixel) size.

kernelSizeMax

Maximum kernel bbox (pixel) size.

kernelSizeMin

Minimum kernel bbox (pixel) size.

kernelSumClipping

Do sigma clipping on the ensemble of kernel sums (bool, default True)

lambdaMax

If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), stop at this value.

lambdaMin

If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), start at this value.

lambdaScaling

Fraction of the default lambda strength (N.R.

lambdaStep

If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), step in these increments.

lambdaStepType

If a scan through lambda is needed (minimizeBiasedRisk, minimizeUnbiasedRisk),

lambdaType

How to choose the value of the regularization strength (str, default 'absolute')

lambdaValue

Value used for absolute determinations of regularization strength (float, default 0.2)

maxConditionNumber

Maximum condition number for a well conditioned matrix (float, default 50000000.0)

maxKsumSigma

Maximum allowed sigma for outliers from kernel sum distribution.

maxSpatialConditionNumber

Maximum condition number for a well conditioned spatial matrix (float, default 10000000000.0)

maxSpatialIterations

Maximum number of iterations for rejecting bad KernelCandidates in spatial fitting (int, default 3)

nStarPerCell

Maximum number of KernelCandidates in each SpatialCell to use in the spatial fitting.

numPrincipalComponents

Number of principal components to use for Pca basis, including the mean kernel if requested.

regularizationBorderPenalty

Value of the penalty for kernel border pixels (float, default 3.0)

regularizationType

Type of regularization.

scaleByFwhm

Scale kernelSize, alardGaussians by input Fwhm (bool, default True)

singleKernelClipping

Do sigma clipping on each raw kernel candidate (bool, default True)

sizeCellX

Size (rows) in pixels of each SpatialCell for spatial modeling (int, default 128)

sizeCellY

Size (columns) in pixels of each SpatialCell for spatial modeling (int, default 128)

spatialBgOrder

Spatial order of differential background variation (int, default 1)

spatialKernelClipping

Do sigma clipping after building the spatial model (bool, default True)

spatialKernelOrder

Spatial order of convolution kernel variation (int, default 2)

spatialModelType

Type of spatial functions for kernel and background (str, default 'chebyshev1')

subtractMeanForPca

Subtract off the mean feature before doing the Pca (bool, default True)

useAfwBackground

Use afw background subtraction instead of ip_diffim (bool, default False)

useBicForKernelBasis

Use Bayesian Information Criterion to select the number of bases going into the kernel (bool, default False)

useCoreStats

Use the core of the footprint for the quality statistics, instead of the entire footprint.

usePcaForSpatialKernel

Use Pca to reduce the dimensionality of the kernel basis sets.

useRegularization

Use regularization to smooth the delta function kernels (bool, default True)

warpingConfig

Config for warping exposures to a common alignment (WarperConfig, default <class 'lsst.afw.math._warper.WarperConfig'>)

Methods Summary

setDefaults()

Subclass hook for computing defaults.

Attributes Documentation

afwBackgroundConfig#

Controlling the Afw background fitting (SubtractBackgroundConfig, default <class 'lsst.meas.algorithms.subtractBackground.SubtractBackgroundConfig'>)

badMaskPlanes#

Mask planes to ignore when calculating diffim statistics Options: NO_DATA EDGE SAT BAD CR INTRP (List, default ('NO_DATA', 'EDGE', 'SAT'))

calculateKernelUncertainty#

Calculate kernel and background uncertainties for each kernel candidate? This comes from the inverse of the covariance matrix. Warning: regularization can cause problems for this step. (bool, default False)

candidateCoreRadius#

Radius for calculation of stats in ‘core’ of KernelCandidate diffim. Total number of pixels used will be (2*radius)**2. This is used both for ‘core’ diffim quality as well as ranking of KernelCandidates by their total flux in this core (int, default 3)

candidateResidualMeanMax#

Rejects KernelCandidates yielding bad difference image quality. Used by BuildSingleKernelVisitor, AssessSpatialKernelVisitor. Represents average over pixels of (image/sqrt(variance)). (float, default 0.25)

candidateResidualStdMax#

Rejects KernelCandidates yielding bad difference image quality. Used by BuildSingleKernelVisitor, AssessSpatialKernelVisitor. Represents stddev over pixels of (image/sqrt(variance)). (float, default 1.5)

centralRegularizationStencil#

Type of stencil to approximate central derivative (for centralDifference only) (int, default 9)

Allowed values:

'5'

5-point stencil including only adjacent-in-x,y elements

'9'

9-point stencil including diagonal elements

'None'

Field is optional

checkConditionNumber#

Test for maximum condition number when inverting a kernel matrix. Anything above maxConditionNumber is not used and the candidate is set as BAD. Also used to truncate inverse matrix in estimateBiasedRisk. However, if you are doing any deconvolution you will want to turn this off, or use a large maxConditionNumber (bool, default False)

conditionNumberType#

Use singular values (SVD) or eigen values (EIGENVALUE) to determine condition number (str, default 'EIGENVALUE')

Allowed values:

'SVD'

Use singular values

'EIGENVALUE'

Use eigen values (faster)

'None'

Field is optional

constantVarianceWeighting#

Use constant variance weighting in single kernel fitting? In some cases this is better for bright star residuals. (bool, default True)

fitForBackground#

Include terms (including kernel cross terms) for background in ip_diffim (bool, default False)

forwardRegularizationOrders#

Array showing which order derivatives to penalize (for forwardDifference only) (List, default (1, 2))

iterateSingleKernel#

Remake KernelCandidate using better variance estimate after first pass? Primarily useful when convolving a single-depth image, otherwise not necessary. (bool, default False)

kernelBasisSet#

Type of basis set for PSF matching kernel. (str, default 'alard-lupton')

Allowed values:

'alard-lupton'
Alard-Lupton sum-of-gaussians basis set,
  • The first term has no spatial variation

  • The kernel sum is conserved

  • You may want to turn off ‘usePcaForSpatialKernel’

'delta-function'
Delta-function kernel basis set,
  • You may enable the option useRegularization

  • You should seriously consider usePcaForSpatialKernel, which will also enable kernel sum conservation for the delta function kernels

'None'

Field is optional

kernelSize#

Number of rows/columns in the convolution kernel; should be odd-valued. Modified by kernelSizeFwhmScaling if scaleByFwhm = true (int, default 21)

kernelSizeFwhmScaling#

Multiplier of the largest AL Gaussian basis sigma to get the kernel bbox (pixel) size. (float, default 6.0)

kernelSizeMax#

Maximum kernel bbox (pixel) size. (int, default 35)

kernelSizeMin#

Minimum kernel bbox (pixel) size. (int, default 21)

kernelSumClipping#

Do sigma clipping on the ensemble of kernel sums (bool, default True)

lambdaMax#

If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), stop at this value. If lambdaStepType = log:linear, suggest 2:100 (float, default 2.0)

lambdaMin#

If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), start at this value. If lambdaStepType = log:linear, suggest -1:0.1 (float, default -1.0)

lambdaScaling#

Fraction of the default lambda strength (N.R. 18.5.8) to use. 1e-4 or 1e-5 (float, default 0.0001)

lambdaStep#

If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), step in these increments. If lambdaStepType = log:linear, suggest 0.1:0.1 (float, default 0.1)

lambdaStepType#
If a scan through lambda is needed (minimizeBiasedRisk, minimizeUnbiasedRisk),

use log or linear steps (str, default 'log')

Allowed values:

'log'

Step in log intervals; e.g. lambdaMin, lambdaMax, lambdaStep = -1.0, 2.0, 0.1

'linear'

Step in linear intervals; e.g. lambdaMin, lambdaMax, lambdaStep = 0.1, 100, 0.1

'None'

Field is optional

lambdaType#

How to choose the value of the regularization strength (str, default 'absolute')

Allowed values:

'absolute'

Use lambdaValue as the value of regularization strength

'relative'

Use lambdaValue as fraction of the default regularization strength (N.R. 18.5.8)

'minimizeBiasedRisk'

Minimize biased risk estimate

'minimizeUnbiasedRisk'

Minimize unbiased risk estimate

'None'

Field is optional

lambdaValue#

Value used for absolute determinations of regularization strength (float, default 0.2)

maxConditionNumber#

Maximum condition number for a well conditioned matrix (float, default 50000000.0)

maxKsumSigma#

Maximum allowed sigma for outliers from kernel sum distribution. Used to reject variable objects from the kernel model (float, default 3.0)

maxSpatialConditionNumber#

Maximum condition number for a well conditioned spatial matrix (float, default 10000000000.0)

maxSpatialIterations#

Maximum number of iterations for rejecting bad KernelCandidates in spatial fitting (int, default 3)

nStarPerCell#

Maximum number of KernelCandidates in each SpatialCell to use in the spatial fitting. Set to -1 to use all candidates in each cell. (int, default 5)

numPrincipalComponents#

Number of principal components to use for Pca basis, including the mean kernel if requested. (int, default 5)

regularizationBorderPenalty#

Value of the penalty for kernel border pixels (float, default 3.0)

regularizationType#

Type of regularization. (str, default 'centralDifference')

Allowed values:

'centralDifference'

Penalize second derivative using 2-D stencil of central finite difference

'forwardDifference'

Penalize first, second, third derivatives using forward finite differeces

'None'

Field is optional

scaleByFwhm#

Scale kernelSize, alardGaussians by input Fwhm (bool, default True)

singleKernelClipping#

Do sigma clipping on each raw kernel candidate (bool, default True)

sizeCellX#

Size (rows) in pixels of each SpatialCell for spatial modeling (int, default 128)

sizeCellY#

Size (columns) in pixels of each SpatialCell for spatial modeling (int, default 128)

spatialBgOrder#

Spatial order of differential background variation (int, default 1)

spatialKernelClipping#

Do sigma clipping after building the spatial model (bool, default True)

spatialKernelOrder#

Spatial order of convolution kernel variation (int, default 2)

spatialModelType#

Type of spatial functions for kernel and background (str, default 'chebyshev1')

Allowed values:

'chebyshev1'

Chebyshev polynomial of the first kind

'polynomial'

Standard x,y polynomial

'None'

Field is optional

subtractMeanForPca#

Subtract off the mean feature before doing the Pca (bool, default True)

useAfwBackground#

Use afw background subtraction instead of ip_diffim (bool, default False)

useBicForKernelBasis#

Use Bayesian Information Criterion to select the number of bases going into the kernel (bool, default False)

useCoreStats#

Use the core of the footprint for the quality statistics, instead of the entire footprint. WARNING: if there is deconvolution we probably will need to turn this off (bool, default False)

usePcaForSpatialKernel#

Use Pca to reduce the dimensionality of the kernel basis sets. This is particularly useful for delta-function kernels. Functionally, after all Cells have their raw kernels determined, we run a Pca on these Kernels, re-fit the Cells using the eigenKernels and then fit those for spatial variation using the same technique as for Alard-Lupton kernels. If this option is used, the first term will have no spatial variation and the kernel sum will be conserved. (bool, default False)

useRegularization#

Use regularization to smooth the delta function kernels (bool, default True)

warpingConfig#

Config for warping exposures to a common alignment (WarperConfig, default <class 'lsst.afw.math._warper.WarperConfig'>)

Methods Documentation

setDefaults()#

Subclass hook for computing defaults.

Notes#

Derived Config classes that must compute defaults rather than using the Field instances’s defaults should do so here. To correctly use inherited defaults, implementations of setDefaults must call their base class’s setDefaults.