ModelInitializer#
- class lsst.meas.extensions.multiprofit.fit_coadd_multiband.ModelInitializer(*, inputs: dict[str, ~typing.Any] = <factory>, priors_shape_mag: dict = <factory>)#
Bases:
ABC,BaseModelAn interface for a configurable model initializer based on priors and optional external data.
Attributes Summary
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].Methods Summary
initialize_model(model, source, catexps, ...)Initialize a MultiProFit model for a single object corresponding to a row in a catalog.
Attributes Documentation
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'frozen': True}#
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
Methods Documentation
- abstract initialize_model(model: ModelD | ModelF, source: Mapping[str, Any], catexps: list[CatalogExposureSourcesABC], config_data: CatalogSourceFitterConfigData, values_init: Mapping[ParameterD, float] | None = None, **kwargs)#
Initialize a MultiProFit model for a single object corresponding to a row in a catalog.
Parameters#
- model
The model to initialize parameter values for.
- source
A mapping with fields expected to be populated in the corresponding source catalog for initialization.
- catexps
Per-band catalog-exposure pairs.
- config_data
Fitter configuration and data.
- values_init
Default initial values for parameters.
- **kwargs
Additional keyword arguments for any purpose.