ProvenanceDatasetModel#

class lsst.pipe.base.quantum_graph.ProvenanceDatasetModel(*, dataset_id: ~uuid.UUID, dataset_type_name: str, data_coordinate: list[int | str] = <factory>, run: str, produced: bool, producer: ~uuid.UUID | None = None, consumers: list[~uuid.UUID] = <factory>)#

Bases: PredictedDatasetModel

Data model for the datasets in a provenance quantum graph file.

Attributes Summary

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

node_id

Alias for the dataset ID.

Methods Summary

copy(*args, **kwargs)

See pydantic.BaseModel.copy.

from_predicted(predicted[, producer, consumers])

Construct from a predicted dataset model.

model_construct(*args, **kwargs)

See pydantic.BaseModel.model_construct.

model_copy(*args, **kwargs)

See pydantic.BaseModel.model_copy.

model_dump(*args, **kwargs)

See pydantic.BaseModel.model_dump.

model_dump_json(*args, **kwargs)

See pydantic.BaseModel.model_dump_json.

model_json_schema(*args, **kwargs)

See pydantic.BaseModel.model_json_schema.

model_validate(*args, **kwargs)

See pydantic.BaseModel.model_validate.

model_validate_json(*args, **kwargs)

See pydantic.BaseModel.model_validate_json.

model_validate_strings(*args, **kwargs)

See pydantic.BaseModel.model_validate_strings.

Attributes Documentation

model_config: ClassVar[ConfigDict] = {}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

node_id#

Alias for the dataset ID.

Methods Documentation

copy(*args: Any, **kwargs: Any) Any#

See pydantic.BaseModel.copy.

classmethod from_predicted(predicted: PredictedDatasetModel, producer: UUID | None = None, consumers: Iterable[UUID] = ()) ProvenanceDatasetModel#

Construct from a predicted dataset model.

Parameters#

predictedPredictedDatasetModel

Information about the dataset from the predicted graph.

produceruuid.UUID or None, optional

ID of the quantum that was predicted to produce this dataset.

consumersIterable [uuid.UUID], optional

IDs of the quanta that were predicted to consume this dataset.

Returns#

provenanceProvenanceDatasetModel

Provenance dataset model.

Notes#

This initializes produced to True when producer is None and False otherwise, on the assumption that it will be updated later.

classmethod model_construct(*args: Any, **kwargs: Any) Any#

See pydantic.BaseModel.model_construct.

model_copy(*args: Any, **kwargs: Any) Any#

See pydantic.BaseModel.model_copy.

model_dump(*args: Any, **kwargs: Any) Any#

See pydantic.BaseModel.model_dump.

model_dump_json(*args: Any, **kwargs: Any) Any#

See pydantic.BaseModel.model_dump_json.

classmethod model_json_schema(*args: Any, **kwargs: Any) Any#

See pydantic.BaseModel.model_json_schema.

classmethod model_validate(*args: Any, **kwargs: Any) Any#

See pydantic.BaseModel.model_validate.

classmethod model_validate_json(*args: Any, **kwargs: Any) Any#

See pydantic.BaseModel.model_validate_json.

classmethod model_validate_strings(*args: Any, **kwargs: Any) Any#

See pydantic.BaseModel.model_validate_strings.