LinearitySolveTask¶
-
class
lsst.cp.pipe.
LinearitySolveTask
(*, config: Optional[PipelineTaskConfig] = None, log: Optional[Union[logging.Logger, LsstLogAdapter]] = None, initInputs: Optional[Dict[str, Any]] = None, **kwargs)¶ Bases:
lsst.pipe.base.PipelineTask
Fit the linearity from the PTC dataset.
Attributes Summary
canMultiprocess
Methods Summary
debugFit
(stepname, xVector, yVector, yModel, …)Debug method for linearity fitting. emptyMetadata
()Empty (clear) the metadata for this Task and all sub-Tasks. fillBadAmp
(linearizer, fitOrder, inputPtc, amp)getFullMetadata
()Get metadata for all tasks. getFullName
()Get the task name as a hierarchical name including parent task names. getName
()Get the name of the task. getResourceConfig
()Return resource configuration for this task. getTaskDict
()Get a dictionary of all tasks as a shallow copy. makeField
(doc)Make a lsst.pex.config.ConfigurableField
for this task.makeSubtask
(name, **keyArgs)Create a subtask as a new instance as the name
attribute of this task.run
(inputPtc, dummy, camera, inputDims[, …])Fit non-linearity to PTC data, returning the correct Linearizer object. runQuantum
(butlerQC, inputRefs, outputRefs)Ensure that the input and output dimensions are passed along. timer
(name, logLevel)Context manager to log performance data for an arbitrary block of code. Attributes Documentation
-
canMultiprocess
= True¶
Methods Documentation
-
debugFit
(stepname, xVector, yVector, yModel, mask, ampName)¶ Debug method for linearity fitting.
Parameters: - stepname :
str
A label to use to check if we care to debug at a given line of code.
- xVector :
numpy.array
, (N,) The values to use as the independent variable in the linearity fit.
- yVector :
numpy.array
, (N,) The values to use as the dependent variable in the linearity fit.
- yModel :
numpy.array
, (N,) The values to use as the linearized result.
- mask :
numpy.array
[bool
], (N,) , optional A mask to indicate which entries of
xVector
andyVector
to keep.- ampName :
str
Amplifier name to lookup linearity correction values.
- stepname :
-
emptyMetadata
() → None¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
fillBadAmp
(linearizer, fitOrder, inputPtc, amp)¶
-
getFullMetadata
() → lsst.pipe.base._task_metadata.TaskMetadata¶ Get metadata for all tasks.
Returns: - metadata :
TaskMetadata
The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethod
is used) and any metadata set by the task. The name of each item consists of the full task name with.
replaced by:
, followed by.
and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:
in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName
() → str¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str
The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getResourceConfig
() → Optional[ResourceConfig]¶ Return resource configuration for this task.
Returns: - Object of type
ResourceConfig
orNone
if resource - configuration is not defined for this task.
- Object of type
-
getTaskDict
() → Dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]]¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict
Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
classmethod
makeField
(doc: str) → lsst.pex.config.configurableField.ConfigurableField¶ Make a
lsst.pex.config.ConfigurableField
for this task.Parameters: - doc :
str
Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField
A
ConfigurableField
for this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask
(name: str, **keyArgs) → None¶ Create a subtask as a new instance as the
name
attribute of this task.Parameters: - name :
str
Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name
, an instance ofConfigurableField
orRegistryField
.- name :
-
run
(inputPtc, dummy, camera, inputDims, inputPhotodiodeData=None, inputPhotodiodeCorrection=None)¶ Fit non-linearity to PTC data, returning the correct Linearizer object.
Parameters: - inputPtc :
lsst.ip.isr.PtcDataset
Pre-measured PTC dataset.
- dummy :
lsst.afw.image.Exposure
The exposure used to select the appropriate PTC dataset. In almost all circumstances, one of the input exposures used to generate the PTC dataset is the best option.
- inputPhotodiodeCorrection :
lsst.ip.isr.PhotodiodeCorrection
Pre-measured photodiode correction used in the case when applyPhotodiodeCorrection=True.
- camera :
lsst.afw.cameraGeom.Camera
Camera geometry.
- inputPhotodiodeData :
dict
[str
,lsst.ip.isr.PhotodiodeCalib
] Photodiode readings data.
- inputDims :
lsst.daf.butler.DataCoordinate
ordict
DataIds to use to populate the output calibration.
Returns: - results :
lsst.pipe.base.Struct
The results struct containing:
outputLinearizer
Final linearizer calibration (
lsst.ip.isr.Linearizer
).outputProvenance
Provenance data for the new calibration (
lsst.ip.isr.IsrProvenance
).
Notes
This task currently fits only polynomial-defined corrections, where the correction coefficients are defined such that: \(corrImage = uncorrImage + \sum_i c_i uncorrImage^(2 + i)\) These \(c_i\) are defined in terms of the direct polynomial fit: \(meanVector ~ P(x=timeVector) = \sum_j k_j x^j\) such that \(c_(j-2) = -k_j/(k_1^j)\) in units of DN^(1-j) (c.f., Eq. 37 of 2003.05978). The
config.polynomialOrder
orconfig.splineKnots
define the maximum order of \(x^j\) to fit. As \(k_0\) and \(k_1\) are degenerate with bias level and gain, they are not included in the non-linearity correction.- inputPtc :
-
runQuantum
(butlerQC, inputRefs, outputRefs)¶ Ensure that the input and output dimensions are passed along.
Parameters: - butlerQC :
lsst.daf.butler.butlerQuantumContext.ButlerQuantumContext
Butler to operate on.
- inputRefs :
lsst.pipe.base.InputQuantizedConnection
Input data refs to load.
- ouptutRefs :
lsst.pipe.base.OutputQuantizedConnection
Output data refs to persist.
- butlerQC :
-
timer
(name: str, logLevel: int = 10) → Iterator[None]¶ Context manager to log performance data for an arbitrary block of code.
Parameters: See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
-