MakeMetricTableTask#
- class lsst.analysis.tools.tasks.MakeMetricTableTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)#
Bases:
PipelineTaskTurn metric bundles and combine them into a metric table.
Methods Summary
run(dataIdInfo, metricBundles, skymap)Take the metric bundles and expand them out, then make a table of the information.
runQuantum(butlerQC, inputRefs, outputRefs)Take a set of metric bundles, seperate each into its different metrics, then put the values into a table with the metric names as column headers.
Methods Documentation
- run(dataIdInfo, metricBundles, skymap)#
Take the metric bundles and expand them out, then make a table of the information. Add tract corner information if the bundles are tract-level.
Parameters#
- dataIdInfo
list A list of dicts that hold information extracted from the metric bundle dataIds.
- metricBundles
listof lsst.analysis.tools.interfaces._metricMeasurementBundle.MetricMeasurementBundle
skymap :
lsst.skymapReturns#
metricTableStruct :
pipe.base.Structcontainingastropy.table.Table- dataIdInfo
- runQuantum(butlerQC, inputRefs, outputRefs)#
Take a set of metric bundles, seperate each into its different metrics, then put the values into a table with the metric names as column headers.
Parameters#
butlerQC :
lsst.pipe.base.QuantumContextinputRefs :lsst.pipe.base.InputQuantizedConnectionoutputRefs :lsst.pipe.base.OutputQuantizedConnection