MakeMetricTableTask#

class lsst.analysis.tools.tasks.MakeMetricTableTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)#

Bases: PipelineTask

Turn metric bundles and combine them into a metric table.

Methods Summary

run(dataIdInfo, metricBundles, skymap)

Take the metric bundles and expand them out, then make a table of the information.

runQuantum(butlerQC, inputRefs, outputRefs)

Take a set of metric bundles, seperate each into its different metrics, then put the values into a table with the metric names as column headers.

Methods Documentation

run(dataIdInfo, metricBundles, skymap)#

Take the metric bundles and expand them out, then make a table of the information. Add tract corner information if the bundles are tract-level.

Parameters#

dataIdInfolist

A list of dicts that hold information extracted from the metric bundle dataIds.

metricBundleslist of

lsst.analysis.tools.interfaces._metricMeasurementBundle.MetricMeasurementBundle

skymap : lsst.skymap

Returns#

metricTableStruct : pipe.base.Struct containing astropy.table.Table

runQuantum(butlerQC, inputRefs, outputRefs)#

Take a set of metric bundles, seperate each into its different metrics, then put the values into a table with the metric names as column headers.

Parameters#

butlerQC : lsst.pipe.base.QuantumContext inputRefs : lsst.pipe.base.InputQuantizedConnection outputRefs : lsst.pipe.base.OutputQuantizedConnection