ObjectEpochTableTask#
- class lsst.analysis.tools.tasks.ObjectEpochTableTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)#
Bases:
PipelineTaskCollect mean epochs for the observations that went into each object.
TODO: DM-46202, Remove this task once the object epochs are available elsewhere.
Methods Summary
getEpochs(cat, epochMapDict)Get mean epoch of the visits corresponding to object position.
runQuantum(butlerQC, inputRefs, outputRefs)Do butler IO and transform to provide in memory objects for tasks
runmethod.Methods Documentation
- getEpochs(cat, epochMapDict)#
Get mean epoch of the visits corresponding to object position.
Parameters#
- cat
astropy.table.Table Catalog containing object positions.
- epochMapDict:
dict[DeferredDatasetHandle] Dictionary of handles for healsparse maps containing the mean epoch for positions in the reference catalog.
Returns#
- epochDf =
astropy.table.Table Catalog with mean epoch of visits at each object position.
- cat
- runQuantum(butlerQC, inputRefs, outputRefs)#
Do butler IO and transform to provide in memory objects for tasks
runmethod.Parameters#
- butlerQC
QuantumContext A butler which is specialized to operate in the context of a
lsst.daf.butler.Quantum.- inputRefs
InputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined input/prerequisite connections.- outputRefs
OutputQuantizedConnection Datastructure whose attribute names are the names that identify connections defined in corresponding
PipelineTaskConnectionsclass. The values of these attributes are thelsst.daf.butler.DatasetRefobjects associated with the defined output connections.
- butlerQC